医学
传统PCI
血运重建
经皮冠状动脉介入治疗
放射科
冠状动脉造影
血管造影
经皮
闭塞
心脏病学
内科学
心肌梗塞
作者
Zhen Zhou,Yifeng Gao,Weiwei Zhang,Nan Zhang,Hui Wang,Rui Wang,Zhifan Gao,Xiaomeng Huang,Shanshan Zhou,Xu Dai,Guang Yang,Heye Zhang,Koen Nieman,Lei Xu
出处
期刊:Radiology
[Radiological Society of North America]
日期:2023-11-01
卷期号:309 (2)
被引量:6
标识
DOI:10.1148/radiol.231149
摘要
Background CT is helpful in guiding the revascularization of chronic total occlusion (CTO), but manual prediction scores of percutaneous coronary intervention (PCI) success have challenges. Deep learning (DL) is expected to predict success of PCI for CTO lesions more efficiently. Purpose To develop a DL model to predict guidewire crossing and PCI outcomes for CTO using coronary CT angiography (CCTA) and evaluate its performance compared with manual prediction scores.
科研通智能强力驱动
Strongly Powered by AbleSci AI