Deep Model Fusion: A Survey

深度学习 计算机科学 人工智能 稳健性(进化) 融合 机器学习 初始化 传感器融合 人工神经网络 数据挖掘 化学 程序设计语言 语言学 基因 生物化学 哲学
作者
Weishi Li,Yong Peng,Miao Zhang,Liang Ding,Han Hu,Li Shen
出处
期刊:Cornell University - arXiv 被引量:11
标识
DOI:10.48550/arxiv.2309.15698
摘要

Deep model fusion/merging is an emerging technique that merges the parameters or predictions of multiple deep learning models into a single one. It combines the abilities of different models to make up for the biases and errors of a single model to achieve better performance. However, deep model fusion on large-scale deep learning models (e.g., LLMs and foundation models) faces several challenges, including high computational cost, high-dimensional parameter space, interference between different heterogeneous models, etc. Although model fusion has attracted widespread attention due to its potential to solve complex real-world tasks, there is still a lack of complete and detailed survey research on this technique. Accordingly, in order to understand the model fusion method better and promote its development, we present a comprehensive survey to summarize the recent progress. Specifically, we categorize existing deep model fusion methods as four-fold: (1) "Mode connectivity", which connects the solutions in weight space via a path of non-increasing loss, in order to obtain better initialization for model fusion; (2) "Alignment" matches units between neural networks to create better conditions for fusion; (3) "Weight average", a classical model fusion method, averages the weights of multiple models to obtain more accurate results closer to the optimal solution; (4) "Ensemble learning" combines the outputs of diverse models, which is a foundational technique for improving the accuracy and robustness of the final model. In addition, we analyze the challenges faced by deep model fusion and propose possible research directions for model fusion in the future. Our review is helpful in deeply understanding the correlation between different model fusion methods and practical application methods, which can enlighten the research in the field of deep model fusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助小羊采纳,获得10
刚刚
搜集达人应助halabouqii采纳,获得10
1秒前
zy发布了新的文献求助10
1秒前
anyone完成签到 ,获得积分10
1秒前
orixero应助蔡佰航采纳,获得10
1秒前
1秒前
科研通AI6应助南风采纳,获得10
1秒前
呵呵呵呵发布了新的文献求助10
1秒前
yyc发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
3秒前
小杨要努力完成签到,获得积分10
4秒前
CC发布了新的文献求助10
4秒前
5秒前
5秒前
风清扬发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
6秒前
7秒前
Robin完成签到,获得积分10
8秒前
机器猫发布了新的文献求助50
8秒前
科研通AI2S应助仙宝头采纳,获得10
8秒前
卧虎完成签到,获得积分10
8秒前
北杨发布了新的文献求助10
8秒前
9秒前
芽芽完成签到,获得积分20
9秒前
9秒前
9秒前
浮游应助drslytherin采纳,获得10
9秒前
Ava应助ss采纳,获得10
10秒前
pbj发布了新的文献求助10
10秒前
Raymond应助William鉴哲采纳,获得10
10秒前
willlee完成签到 ,获得积分10
10秒前
LiM完成签到,获得积分10
11秒前
11秒前
无花果应助洋葱毛毛球采纳,获得10
11秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340709
求助须知:如何正确求助?哪些是违规求助? 4477046
关于积分的说明 13933849
捐赠科研通 4372955
什么是DOI,文献DOI怎么找? 2402666
邀请新用户注册赠送积分活动 1395551
关于科研通互助平台的介绍 1367628