Machine learning models of plasma proteomic data predict mood in chronic stroke and tie it to aberrant peripheral immune responses

心情 萧条(经济学) 冲程(发动机) 心理学 临床心理学 情绪障碍 生物标志物 生物信息学 医学 精神科 焦虑 生物 工程类 经济 宏观经济学 机械工程 生物化学
作者
Neda H. Bidoki,Kristy Zera,Huda Nassar,Lauren L. Drag,Michael Mlynash,Elizabeth Osborn,Muhith Musabbir,Da Eun Kim,Maria Paula Mendez,Maarten G. Lansberg,Nima Aghaeepour,Marion S. Buckwalter
出处
期刊:Brain Behavior and Immunity [Elsevier BV]
卷期号:114: 144-153 被引量:10
标识
DOI:10.1016/j.bbi.2023.08.002
摘要

Post-stroke depression is common, long-lasting and associated with severe morbidity and death, but mechanisms are not well-understood. We used a broad proteomics panel and developed a machine learning algorithm to determine whether plasma protein data can predict mood in people with chronic stroke, and to identify proteins and pathways associated with mood. We used Olink to measure 1,196 plasma proteins in 85 participants aged 25 and older who were between 5 months and 9 years after ischemic stroke. Mood was assessed with the Stroke Impact Scale mood questionnaire (SIS3). Machine learning multivariable regression models were constructed to estimate SIS3 using proteomics data, age, and time since stroke. We also dichotomized participants into better mood (SIS3 > 63) or worse mood (SIS3 ≤ 63) and analyzed candidate proteins. Machine learning models verified that there is indeed a relationship between plasma proteomic data and mood in chronic stroke, with the most accurate prediction of mood occurring when we add age and time since stroke. At the individual protein level, no single protein or set of proteins predicts mood. But by using univariate analyses of the proteins most highly associated with mood we produced a model of chronic post-stroke depression. We utilized the fact that this list contained many proteins that are also implicated in major depression. Also, over 80% of immune proteins that correlate with mood were higher with worse mood, implicating a broadly overactive immune system in chronic post-stroke depression. Finally, we used a comprehensive literature review of major depression and acute post-stroke depression. We propose that in chronic post-stroke depression there is over-activation of the immune response that then triggers changes in serotonin activity and neuronal plasticity leading to depressed mood.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拼搏问安完成签到,获得积分10
刚刚
刚刚
科目三应助aaaa采纳,获得10
刚刚
冤家Gg发布了新的文献求助10
1秒前
孟君发布了新的文献求助10
2秒前
起名字好难完成签到,获得积分10
4秒前
我是老大应助YUEYANF采纳,获得10
6秒前
6秒前
6秒前
fly发布了新的文献求助20
7秒前
may完成签到,获得积分10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
不安青牛应助科研通管家采纳,获得10
8秒前
不安青牛应助科研通管家采纳,获得10
8秒前
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
李紫硕应助科研通管家采纳,获得20
8秒前
大模型应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
不安青牛应助科研通管家采纳,获得10
9秒前
不安青牛应助科研通管家采纳,获得10
9秒前
大哈酱应助科研通管家采纳,获得10
9秒前
馆长应助科研通管家采纳,获得30
9秒前
科研通AI6应助科研通管家采纳,获得30
9秒前
大哈酱应助科研通管家采纳,获得10
9秒前
Zx_1993应助科研通管家采纳,获得10
9秒前
9秒前
慈祥的发卡完成签到 ,获得积分10
10秒前
zhangfuchao发布了新的文献求助10
12秒前
13秒前
科研通AI5应助cruise采纳,获得10
14秒前
鱼鱼鱼发布了新的文献求助30
14秒前
子车茗应助畅快焦采纳,获得10
14秒前
快乐的亿万富翁完成签到,获得积分10
16秒前
17秒前
可爱的函函应助小徐采纳,获得10
17秒前
wbsw发布了新的文献求助10
17秒前
共产主义战士完成签到,获得积分10
18秒前
18秒前
领导范儿应助十you八九采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
中国减肥产品行业市场发展现状及前景趋势与投资分析研究报告(2025-2030版) 500
《2024-2029年中国减肥产品行业市场分析及发展前景预测报告》 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4509144
求助须知:如何正确求助?哪些是违规求助? 3956084
关于积分的说明 12263356
捐赠科研通 3616410
什么是DOI,文献DOI怎么找? 1989795
邀请新用户注册赠送积分活动 1026255
科研通“疑难数据库(出版商)”最低求助积分说明 917692