Machine learning models of plasma proteomic data predict mood in chronic stroke and tie it to aberrant peripheral immune responses

心情 萧条(经济学) 冲程(发动机) 心理学 临床心理学 情绪障碍 生物标志物 生物信息学 医学 精神科 焦虑 生物 机械工程 生物化学 工程类 经济 宏观经济学
作者
Neda H. Bidoki,Kristy Zera,Huda Nassar,Lauren L. Drag,Michael Mlynash,Elizabeth Osborn,Muhith Musabbir,Da Eun Kim,Maria Paula Mendez,Maarten G. Lansberg,Nima Aghaeepour,Marion S. Buckwalter
出处
期刊:Brain Behavior and Immunity [Elsevier BV]
卷期号:114: 144-153 被引量:4
标识
DOI:10.1016/j.bbi.2023.08.002
摘要

Post-stroke depression is common, long-lasting and associated with severe morbidity and death, but mechanisms are not well-understood. We used a broad proteomics panel and developed a machine learning algorithm to determine whether plasma protein data can predict mood in people with chronic stroke, and to identify proteins and pathways associated with mood. We used Olink to measure 1,196 plasma proteins in 85 participants aged 25 and older who were between 5 months and 9 years after ischemic stroke. Mood was assessed with the Stroke Impact Scale mood questionnaire (SIS3). Machine learning multivariable regression models were constructed to estimate SIS3 using proteomics data, age, and time since stroke. We also dichotomized participants into better mood (SIS3 > 63) or worse mood (SIS3 ≤ 63) and analyzed candidate proteins. Machine learning models verified that there is indeed a relationship between plasma proteomic data and mood in chronic stroke, with the most accurate prediction of mood occurring when we add age and time since stroke. At the individual protein level, no single protein or set of proteins predicts mood. But by using univariate analyses of the proteins most highly associated with mood we produced a model of chronic post-stroke depression. We utilized the fact that this list contained many proteins that are also implicated in major depression. Also, over 80% of immune proteins that correlate with mood were higher with worse mood, implicating a broadly overactive immune system in chronic post-stroke depression. Finally, we used a comprehensive literature review of major depression and acute post-stroke depression. We propose that in chronic post-stroke depression there is over-activation of the immune response that then triggers changes in serotonin activity and neuronal plasticity leading to depressed mood.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
深情安青应助清新的音响采纳,获得10
1秒前
郑嘻嘻完成签到,获得积分10
1秒前
ya发布了新的文献求助10
2秒前
共享精神应助璇er采纳,获得10
5秒前
suodeheng发布了新的文献求助40
6秒前
9秒前
12秒前
15秒前
JUNJUN完成签到,获得积分10
16秒前
16秒前
忧虑的大白菜真实的钥匙完成签到,获得积分10
17秒前
二十八画生完成签到 ,获得积分10
17秒前
hbsand完成签到,获得积分10
18秒前
rye227应助QR采纳,获得10
19秒前
研友_LwbGg8发布了新的文献求助10
19秒前
21秒前
24秒前
24秒前
Andy发布了新的文献求助10
26秒前
王子完成签到,获得积分10
26秒前
皮皮发布了新的文献求助10
26秒前
半盏完成签到,获得积分10
28秒前
务实的以松完成签到,获得积分10
28秒前
29秒前
sy发布了新的文献求助10
30秒前
溴氧铋完成签到 ,获得积分10
30秒前
33秒前
小透明完成签到 ,获得积分10
34秒前
36秒前
36秒前
跳跃若风发布了新的文献求助10
38秒前
39秒前
saf0852完成签到,获得积分10
41秒前
SciGPT应助冰糖葫芦娃采纳,获得10
41秒前
毛毛完成签到 ,获得积分10
42秒前
44秒前
zxt完成签到,获得积分10
46秒前
liyuqi61148完成签到,获得积分10
46秒前
李思超发布了新的文献求助240
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778058
求助须知:如何正确求助?哪些是违规求助? 3323749
关于积分的说明 10215625
捐赠科研通 3038921
什么是DOI,文献DOI怎么找? 1667711
邀请新用户注册赠送积分活动 798361
科研通“疑难数据库(出版商)”最低求助积分说明 758339