数学
中央歧管
混乱的
李雅普诺夫指数
分叉
倍周期分岔
干草叉分叉
分叉理论的生物学应用
鞍结分岔
功能性反应
控制理论(社会学)
动力系统理论
复杂动力学
余维数
应用数学
霍普夫分叉
数学分析
非线性系统
计算机科学
物理
控制(管理)
古生物学
捕食
量子力学
人工智能
生物
捕食者
作者
Yang Run,Jiang‐Lin Zhao
出处
期刊:Advances in Continuous and Discrete Models
[Springer Nature]
日期:2023-10-23
卷期号:2023 (1)
标识
DOI:10.1186/s13662-023-03788-y
摘要
Abstract The dynamics of a discrete Holling–Tanner model with Beddington–DeAngelis functional response is studied. The permanence and local stability of fixed points for the model are derived. The center manifold theorem and bifurcation theory are used to show that the model can undergo flip and Hopf bifurcations. Codimension-two bifurcation associated with 1:2 resonance is analyzed by applying the bifurcation theory. Numerical simulations are performed not only to verify the correctness of theoretical analysis but to explore complex dynamical behaviors such as period-6, 7, 10, 12 orbits, a cascade of period-doubling, quasi-periodic orbits, and the chaotic sets. The maximum Lyapunov exponents validate the chaotic dynamical behaviors of the system. The feedback control method is considered to stabilize the chaotic orbits. These complex dynamical behaviors imply that the coexistence of predator and prey may produce very complex patterns.
科研通智能强力驱动
Strongly Powered by AbleSci AI