A physically consistent framework for fatigue life prediction using probabilistic physics-informed neural network

人工神经网络 概率逻辑 机器学习 人工智能 计算机科学 概率神经网络 时滞神经网络
作者
Taotao Zhou,Shan Jiang,Te Han,Shun‐Peng Zhu,Yinan Cai
出处
期刊:International Journal of Fatigue [Elsevier BV]
卷期号:166: 107234-107234 被引量:75
标识
DOI:10.1016/j.ijfatigue.2022.107234
摘要

Machine learning has drawn growing attention from the areas of fatigue, fracture, and structural integrity. However, most current studies are fully data-driven and may contradict the underpinning physical knowledge. To address this issue, we propose a physically consistent framework for fatigue life prediction that uses a probabilistic physics-informed neural network (PINN) to incorporate the physics underpinning the fatigue mechanism. Particularly, we consider the scatter of the fatigue life using a probabilistic neural network with the output to parametrize the fatigue life distribution. Then use neural networks' inherent backpropagation capabilities to automatically compute the derivatives that represent the physical knowledge. Finally, construct a composite loss function to encode the derivatives with certain physical constraints and uses a negative log-likelihood function to consider both failure data and run-out data. This enforces the network training process to learn a continuous function that describes the stress-life relationship satisfying both experimental data and physical knowledge. We demonstrate the proposed framework with sensitivity analysis and a comparison to the fully data-driven neural networks and the conventional statistical methods using the fatigue test data of three different materials. The results show that the proposed framework has a robust performance to effectively reflect the underlying physical knowledge and prevent overfitting issues. The findings provide a better understanding of neural networks’ application to fatigue life prediction and suggest that one should be cautious when using a fully data-driven approach in scientific applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kathy完成签到,获得积分10
2秒前
jingjing完成签到 ,获得积分10
2秒前
不安溪灵完成签到,获得积分10
5秒前
ann完成签到,获得积分10
7秒前
独特语琴发布了新的文献求助10
7秒前
8秒前
wanci应助七月采纳,获得10
8秒前
123完成签到,获得积分10
8秒前
18秒前
18秒前
彭于晏应助XIXI采纳,获得10
20秒前
orixero应助sue401采纳,获得10
21秒前
xiong完成签到 ,获得积分10
21秒前
小柒柒完成签到,获得积分10
21秒前
杰克李李完成签到,获得积分10
21秒前
21秒前
欢呼的凌兰完成签到,获得积分10
23秒前
123完成签到,获得积分10
24秒前
24秒前
情怀应助独特语琴采纳,获得10
26秒前
研友_O8Wz4Z发布了新的文献求助200
27秒前
darkpigx完成签到,获得积分10
27秒前
香蕉觅云应助自觉紫安采纳,获得10
27秒前
伶俐白凝完成签到 ,获得积分10
30秒前
32秒前
东风徐来完成签到,获得积分10
33秒前
34秒前
34秒前
puheshengwu完成签到,获得积分10
35秒前
35秒前
36秒前
小闵发布了新的文献求助10
36秒前
俭朴自中完成签到,获得积分10
37秒前
言午完成签到,获得积分10
37秒前
桐桐应助背后老六采纳,获得10
37秒前
彭于晏应助puheshengwu采纳,获得10
39秒前
sue401发布了新的文献求助10
39秒前
39秒前
自觉紫安发布了新的文献求助10
40秒前
Yunis完成签到 ,获得积分10
40秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793333
求助须知:如何正确求助?哪些是违规求助? 3338077
关于积分的说明 10288655
捐赠科研通 3054718
什么是DOI,文献DOI怎么找? 1676139
邀请新用户注册赠送积分活动 804145
科研通“疑难数据库(出版商)”最低求助积分说明 761757