清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

[Detection of microaneurysms in fundus images based on improved YOLOv4 with SENet embedded].

计算机科学 背景(考古学) 骨干网 人工智能 联营 模式识别(心理学) 聚类分析 眼底(子宫) 深度学习 棱锥(几何) 目标检测 数学 几何学 眼科 古生物学 生物 医学 计算机网络
作者
Weiwei Gao,Mingtao Shan,Nan Song,Bo Fan,Yu Fang
出处
期刊:PubMed 卷期号:39 (4): 713-720 被引量:1
标识
DOI:10.7507/1001-5515.202203022
摘要

Microaneurysm is the initial symptom of diabetic retinopathy. Eliminating this lesion can effectively prevent diabetic retinopathy in the early stage. However, due to the complex retinal structure and the different brightness and contrast of fundus image because of different factors such as patients, environment and acquisition equipment, the existing detection algorithms are difficult to achieve the accurate detection and location of the lesion. Therefore, an improved detection algorithm of you only look once (YOLO) v4 with Squeeze-and-Excitation networks (SENet) embedded was proposed. Firstly, an improved and fast fuzzy c-means clustering algorithm was used to optimize the anchor parameters of the target samples to improve the matching degree between the anchors and the feature graphs; Then, the SENet attention module was embedded in the backbone network to enhance the key information of the image and suppress the background information of the image, so as to improve the confidence of microaneurysms; In addition, an spatial pyramid pooling was added to the network neck to enhance the acceptance domain of the output characteristics of the backbone network, so as to help separate important context information; Finally, the model was verified on the Kaggle diabetic retinopathy dataset and compared with other methods. The experimental results showed that compared with other YOLOv4 network models with various structures, the improved YOLOv4 network model could significantly improve the automatic detection results such as F-score which increased by 12.68%; Compared with other network models and methods, the automatic detection accuracy of the improved YOLOv4 network model with SENet embedded was obviously better, and accurate positioning could be realized. Therefore, the proposed YOLOv4 algorithm with SENet embedded has better performance, and can accurately and effectively detect and locate microaneurysms in fundus images.微动脉瘤是糖尿病视网膜病变的初期症状,消除该病灶可在早期非常有效地预防糖尿病视网膜病变。但由于视网膜结构复杂,同时眼底图像的成像由于患者、环境、采集设备等因素的不同会存在不同的亮度和对比度,现有的微动脉瘤检测算法难以实现该病灶的精确检测和定位,为此本文提出嵌入SENet(squeeze-and-excitation networks)的改进YOLO(you only look once)v4自动检测算法。该算法在YOLOv4网络基础上,首先通过使用一种改进的快速模糊C均值聚类算法对目标样本进行先验框参数优化,以提高先验框与特征图的匹配度;然后,在主干网络嵌入SENet模块,通过强化关键信息,抑制背景信息,提高微动脉瘤的置信度;此外,还在网络颈部增加空间金字塔池化结构以增强主干网络输出特征的接受域,从而有助于分离出重要的上下文信息;最后,在Kaggle数据集上进行模型验证,并与其他方法进行对比。实验结果表明,与其他各种结构的YOLOv4网络模型相比,所提出的嵌入SENet的改进YOLOv4网络模型能显著提高检测结果(与原始YOLOv4相比F-score提升了12.68%);与其他网络模型以及方法相比,所提出的嵌入SENet的改进YOLOv4网络模型的自动检测精度明显更优,且可实现精准定位。故本文所提出的嵌入SENet的改进YOLOv4算法性能较优,能准确、有效地检测并定位出眼底图像中的微动脉瘤。.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
10秒前
NexusExplorer应助谨慎初蝶采纳,获得10
28秒前
37秒前
优雅山柏发布了新的文献求助10
45秒前
顺利问玉完成签到 ,获得积分10
56秒前
59秒前
谨慎初蝶发布了新的文献求助10
1分钟前
谨慎初蝶完成签到,获得积分10
1分钟前
领导范儿应助12345采纳,获得50
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
通科研完成签到 ,获得积分10
2分钟前
ning_qing完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
12345发布了新的文献求助50
2分钟前
无情的友容完成签到 ,获得积分10
3分钟前
不秃燃的小老弟完成签到 ,获得积分10
3分钟前
苏苏爱学习完成签到 ,获得积分10
3分钟前
spy完成签到 ,获得积分10
3分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
勿奈何完成签到,获得积分10
4分钟前
4分钟前
jokerhoney完成签到,获得积分10
5分钟前
5分钟前
6分钟前
Sunny完成签到,获得积分10
7分钟前
keyan完成签到 ,获得积分10
7分钟前
一个小胖子完成签到,获得积分10
7分钟前
天凉王破完成签到 ,获得积分10
7分钟前
孙燕应助科研通管家采纳,获得10
8分钟前
葛力发布了新的文献求助10
8分钟前
鱼羊明完成签到 ,获得积分10
9分钟前
勤劳的斑马完成签到,获得积分10
9分钟前
9分钟前
9分钟前
9分钟前
猫xuan发布了新的文献求助10
9分钟前
arsenal完成签到 ,获得积分10
10分钟前
英俊的铭应助科研通管家采纳,获得10
10分钟前
隐形曼青应助科研通管家采纳,获得10
10分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840848
求助须知:如何正确求助?哪些是违规求助? 3382744
关于积分的说明 10526417
捐赠科研通 3102602
什么是DOI,文献DOI怎么找? 1708918
邀请新用户注册赠送积分活动 822781
科研通“疑难数据库(出版商)”最低求助积分说明 773603