聚类分析
核(代数)
变核密度估计
简单(哲学)
分布的核嵌入
数学
梯度下降
计算机科学
核方法
核主成分分析
算法
数学优化
模式识别(心理学)
人工智能
组合数学
人工神经网络
支持向量机
哲学
认识论
作者
Xinwang Liu,En Zhu,Jiyuan Liu,Timothy M. Hospedales,Yang Wang,Meng Wang
出处
期刊:Cornell University - arXiv
日期:2020-01-01
被引量:5
标识
DOI:10.48550/arxiv.2005.04975
摘要
We propose a simple yet effective multiple kernel clustering algorithm, termed simple multiple kernel k-means (SimpleMKKM). It extends the widely used supervised kernel alignment criterion to multi-kernel clustering. Our criterion is given by an intractable minimization-maximization problem in the kernel coefficient and clustering partition matrix. To optimize it, we re-formulate the problem as a smooth minimization one, which can be solved efficiently using a reduced gradient descent algorithm. We theoretically analyze the performance of SimpleMKKM in terms of its clustering generalization error. Comprehensive experiments on 11 benchmark datasets demonstrate that SimpleMKKM outperforms state of the art multi-kernel clustering alternatives.
科研通智能强力驱动
Strongly Powered by AbleSci AI