纳米载体
败血症
药理学
体内
姜黄素
药物输送
壳聚糖
药品
化学
医学
材料科学
纳米技术
免疫学
生物化学
生物
生物技术
作者
Li Teng,Yiliang Zhang,Li Chen,Ge Shi
标识
DOI:10.1080/09205063.2023.2181554
摘要
This study aimed to fabricate an eco-friendly functionalized chitosan (CS) nanocarrier to establish a pH-responsive drug delivery system for the treatment of sepsis. Curcumin (Cur) and cerium oxide (CeO2) were loaded onto an octenylsuccinic anhydride (OSA)-functionalized CS nanoformulation (Cur@Ce/OCS) to achieve an effective nanocarrier (NC) for sepsis treatment. The physicochemical characteristics of the developed nanocarriers were determined using various characterization techniques. The developed CeO2-OCS nanoformulation has been showed effective anti-bacterial activity (∼97%) against G+ and G- bacterial pathogens, and also have improved drug loading (94% ± 2), and encapsulation efficiency (89.8% ± 1.5), with uniform spherical particles having an average diameter of between 100 and 150 nm. The in vivo experimental results establish that Cur-loaded Ce/OCS NPs could have enhanced therapeutic potential against lung infection model by reducing bacterial burden and extensively decreasing inflammatory responses in sepsis model. Additionally, we determined the in vivo biosafety of the nanoformulations by histological observation of different mouse organs (heart, liver, spleen, and kidney), and observed no signs of toxicity in the treatment groups. The findings of this study clearly demonstrate the therapeutic potential of pH-sensitive nanoplatforms in the management of infectious sepsis.
科研通智能强力驱动
Strongly Powered by AbleSci AI