Underwater bolted flange looseness detection using percussion-induced sound and Feature-reduced Multi-ROCKET model

水下 轮缘 计算机科学 音频信号 工程类 人工智能 声学 语音识别 模式识别(心理学) 结构工程 数字信号处理 电子工程 海洋学 物理 地质学
作者
Jian Chen,Zheng Chen,Weihang Zhu,Gangbing Song
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:23 (1): 495-511 被引量:11
标识
DOI:10.1177/14759217231153991
摘要

Recently, in the field of structural health monitoring, the detection of bolted connection looseness through percussion-based method and machine learning technology has received much attention due to the advantages of removing the requirement of sensor installation and potential for automation. However, there are few such research which are performed in the underwater environment. The paper proposes a new method, Feature-reduced Multiple Random Convolution Kernel Transform (FM-ROCKET), to identify the looseness level of the underwater bolted connections based on the percussion-induced sound (audio signal). By integrating deep learning (DL) and shallow learning, the FM-ROCKET model uses the 1D convolutional layer (a DL method) to extract features from the percussion-induced audio signal and adopts the rigid classifier (linear classifier, a shallow learning method) to classify the features. Five different preload levels of the bolted flange are considered. A hammer is utilized to tap the flange surface and the continuous percussion-induced audio signal is collected by a smartphone in an underwater environment. After the audio signal segmentation, single-hit audio signals are fed into the FM-ROCKET model. To verify the effectiveness of the proposed method, three case studies are conducted on two flanges. In case study I, the proposed method slightly outperforms other DL-based methods under different training/test splitting ratios. In case studies II and III, the proposed method is far more effective than other DL-based methods on independent and different test sets. The results demonstrate the superiority of the FM-ROCKET model in the underwater detection of bolted flange looseness. To the best of our knowledge, this article is the first attempt to address the detection of bolted flange looseness in the underwater environment by combining percussion-based method, DL, and shallow learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鹿小新发布了新的文献求助10
3秒前
3秒前
hao完成签到,获得积分10
4秒前
70发布了新的文献求助10
4秒前
Xiaoxiao应助无奈的铅笔采纳,获得10
8秒前
9秒前
9秒前
dddd完成签到,获得积分10
9秒前
10秒前
传奇3应助lvsehx采纳,获得10
11秒前
光亮千易完成签到,获得积分10
11秒前
嘻嘻嘻完成签到,获得积分10
12秒前
13秒前
13秒前
蓝色发布了新的文献求助10
13秒前
汉堡包应助dddd采纳,获得10
13秒前
14秒前
16秒前
17秒前
神的女人完成签到,获得积分10
17秒前
lvsehx完成签到,获得积分10
19秒前
Yue发布了新的文献求助10
19秒前
20秒前
21秒前
布曲发布了新的文献求助10
22秒前
张宏宇发布了新的文献求助10
23秒前
Master完成签到,获得积分10
23秒前
蓝色完成签到,获得积分10
24秒前
相信相信的力量完成签到,获得积分10
24秒前
付莹子发布了新的文献求助10
25秒前
lyx2010完成签到,获得积分10
28秒前
伊力扎提完成签到,获得积分20
28秒前
老杨是混蛋完成签到,获得积分10
29秒前
激昂的逊完成签到 ,获得积分10
30秒前
32秒前
32秒前
ZXK完成签到 ,获得积分10
33秒前
34秒前
陈陈完成签到,获得积分10
35秒前
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781132
求助须知:如何正确求助?哪些是违规求助? 3326545
关于积分的说明 10227747
捐赠科研通 3041707
什么是DOI,文献DOI怎么找? 1669585
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758745