Affinity Feature Strengthening for Accurate, Complete and Robust Vessel Segmentation

分割 计算机科学 稳健性(进化) 人工智能 数字减影血管造影 像素 特征(语言学) 模式识别(心理学) 计算机视觉 对比度(视觉) 图像分割 特征提取 血管造影 医学 放射科 生物化学 化学 语言学 哲学 基因
作者
Tianyi Shi,Xiaohuan Ding,Wei Zhou,Feng Pan,Zengqiang Yan,Xiang Bai,Xin Yang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (8): 4006-4017 被引量:16
标识
DOI:10.1109/jbhi.2023.3274789
摘要

Vessel segmentation is crucial in many medical image applications, such as detecting coronary stenoses, retinal vessel diseases and brain aneurysms. However, achieving high pixel-wise accuracy, complete topology structure and robustness to various contrast variations are critical and challenging, and most existing methods focus only on achieving one or two of these aspects. In this paper, we present a novel approach, the affinity feature strengthening network (AFN), which jointly models geometry and refines pixel-wise segmentation features using a contrast-insensitive, multiscale affinity approach. Specifically, we compute a multiscale affinity field for each pixel, capturing its semantic relationships with neighboring pixels in the predicted mask image. This field represents the local geometry of vessel segments of different sizes, allowing us to learn spatial- and scale-aware adaptive weights to strengthen vessel features. We evaluate our AFN on four different types of vascular datasets: X-ray angiography coronary vessel dataset (XCAD), portal vein dataset (PV), digital subtraction angiography cerebrovascular vessel dataset (DSA) and retinal vessel dataset (DRIVE). Extensive experimental results demonstrate that our AFN outperforms the state-of-the-art methods in terms of both higher accuracy and topological metrics, while also being more robust to various contrast changes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
solosad应助鱼鱼鱼采纳,获得10
刚刚
1秒前
2秒前
4秒前
4秒前
5秒前
5秒前
科研通AI5应助陈文文采纳,获得10
5秒前
CipherSage应助WCQ采纳,获得10
6秒前
王果果发布了新的文献求助10
6秒前
咖啡发布了新的文献求助10
6秒前
7秒前
7秒前
9秒前
绿麦盲区完成签到 ,获得积分10
9秒前
10秒前
10秒前
KK发布了新的文献求助10
10秒前
JQ发布了新的文献求助10
11秒前
willyt完成签到,获得积分10
11秒前
11秒前
11秒前
清溪发布了新的文献求助10
12秒前
星辰大海应助ivy采纳,获得10
12秒前
脑洞疼应助我是sci大王采纳,获得10
13秒前
13秒前
炒栗子发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
15秒前
zho发布了新的文献求助10
16秒前
小白发布了新的文献求助10
16秒前
16秒前
liu发布了新的文献求助10
17秒前
温暖完成签到,获得积分20
17秒前
yydragen应助炒栗子采纳,获得20
18秒前
可爱的函函应助炒栗子采纳,获得10
18秒前
ATLI发布了新的文献求助10
18秒前
隐形曼青应助清溪采纳,获得10
18秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
International standard-setting alliance and its possible negative effect on consumer's technology acceptance and technology progress 200
Erectile dysfunction From bench to bedside 200
Integrated supply chain risk management capabilities and its impact on supply chain demand management - an empirical study 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824675
求助须知:如何正确求助?哪些是违规求助? 3366948
关于积分的说明 10443670
捐赠科研通 3086278
什么是DOI,文献DOI怎么找? 1697916
邀请新用户注册赠送积分活动 816559
科研通“疑难数据库(出版商)”最低求助积分说明 769826