MD-GNN: A mechanism-data-driven graph neural network for molecular properties prediction and new material discovery

可解释性 计算机科学 人工神经网络 机制(生物学) 图形 数据挖掘 人工智能 嵌入 一般化 计算 机器学习 理论计算机科学 算法 数学 哲学 数学分析 认识论
作者
Saian Chen,Aziguli Wulamu,Qiping Zou,Han Zheng,Wen Li,Xi Guo,Han Chen,Taohong Zhang,Ying Zhang
出处
期刊:Journal of Molecular Graphics & Modelling [Elsevier BV]
卷期号:123: 108506-108506 被引量:20
标识
DOI:10.1016/j.jmgm.2023.108506
摘要

Molecular properties prediction and new material discovery are significant for the pharmaceutical industry, food, chemistry, and other fields. The popular methods are theoretical mechanism calculation and machine learning. There is a deviation between the theoretical mechanism calculation results and the experimental data. Machine learning method provides a promising solution. However, the process is lack of interpretability, and the reliability and the generalization depend on the training data. In this paper, a mechanism correction model combined with graph neural network (GNN) model which is based on the fusion of graph embedding and descriptors vector is proposed as backbone network to proceed molecule properties prediction and new material discovery. The molecular structure is input to graph neural network and the abstracted features are fused with numerical features together for training. The experiment data and computing data are designed as label constructor, and then the theoretical computation (mechanism driven model) is fused with the output of GNN (data-driven model) to form a fused model to modulate the output for the molecular property prediction. Experiments for public data set are executed and the results show that Mechanism-Data-Driven Graph Neural Network (MD-GNN) can effectively make the predicted results more accurate. Nineteen molecules by different construction are designed for potential drug discovery, the prediction from the proposed MD-GNN model shows that there are 9 candidates are discovered.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
合适的寄灵完成签到 ,获得积分10
2秒前
忧虑的静柏完成签到 ,获得积分10
2秒前
6秒前
大大怪完成签到 ,获得积分10
8秒前
9秒前
9秒前
11秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
zz完成签到 ,获得积分10
16秒前
tdtk发布了新的文献求助10
16秒前
如意的馒头完成签到 ,获得积分10
18秒前
仰望喀纳斯的星空完成签到,获得积分10
18秒前
21秒前
22秒前
慕青应助科研通管家采纳,获得10
30秒前
积极从蕾应助科研通管家采纳,获得10
30秒前
积极从蕾应助科研通管家采纳,获得10
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
积极从蕾应助科研通管家采纳,获得10
30秒前
从心随缘完成签到 ,获得积分10
32秒前
xyawl425完成签到,获得积分10
33秒前
lwk205应助吴红波采纳,获得10
34秒前
脑洞疼应助tdtk采纳,获得10
34秒前
研友_Z1eDgZ完成签到,获得积分10
37秒前
38秒前
踏实的怜菡完成签到 ,获得积分10
41秒前
几几完成签到,获得积分10
42秒前
开心每一天完成签到 ,获得积分10
42秒前
孜然味的拜拜肉完成签到,获得积分10
43秒前
微雨若,,完成签到 ,获得积分10
44秒前
46秒前
FL完成签到,获得积分10
47秒前
大模型应助昼夜采纳,获得10
52秒前
务实颜完成签到 ,获得积分10
55秒前
ycd完成签到,获得积分10
57秒前
1分钟前
清逸之风完成签到 ,获得积分10
1分钟前
xiaowanzi完成签到 ,获得积分10
1分钟前
Eins完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Exosomes from Umbilical Cord-Originated Mesenchymal Stem Cells (MSCs) Prevent and Treat Diabetic Nephropathy in Rats via Modulating the Wingless-Related Integration Site (Wnt)/β-Catenin Signal Transduction Pathway 500
Global Eyelash Assessment scale (GEA) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4030178
求助须知:如何正确求助?哪些是违规求助? 3568910
关于积分的说明 11356436
捐赠科研通 3299672
什么是DOI,文献DOI怎么找? 1816822
邀请新用户注册赠送积分活动 890936
科研通“疑难数据库(出版商)”最低求助积分说明 813974