已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Soft‐Fiber Bioelectronic Device with Axon‐Like Architecture Enables Reliable Neural Recording In Vivo under Vigorous Activities

材料科学 体内 神经科学 纳米技术 纤维 轴突 生物医学工程 医学 复合材料 生物 生物技术
作者
Chengqiang Tang,Zhengqi Han,Ziwei Liu,Wenjun Li,Jiahao Shen,Kailin Zhang,Shuting Mai,Jinyan Li,Xiao Wei Sun,Xingfei Chen,Hongjian Li,Liyuan Wang,Jiaheng Liang,Meng Liao,Jianyou Feng,Chuang Wang,Jiajia Wang,Lei Ye,Yiqing Yang,Songlin Xie
出处
期刊:Advanced Materials [Wiley]
卷期号:36 (38): e2407874-e2407874 被引量:16
标识
DOI:10.1002/adma.202407874
摘要

Abstract Implantable neural devices that record neurons in various states, including static states, light activities such as walking, and vigorous activities such as running, offer opportunities for understanding brain functions and dysfunctions. However, recording neurons under vigorous activities remains a long‐standing challenge because it leads to intense brain deformation. Thus, three key requirements are needed simultaneously for neural devices, that is, low modulus, low specific interfacial impedance, and high electrical conductivity, to realize stable device/brain interfaces and high‐quality transmission of neural signals. However, they always contradict each other in current material strategies. Here, a soft fiber neural device capable of stably tracking individual neurons in the deep brain of medium‐sized animals under vigorous activity is reported. Inspired by the axon architecture, this fiber neural device is constructed with a conductive gel fiber possessing a network‐in‐liquid structure using conjugated polymers and liquid matrices and then insulated with soft fluorine rubber. This strategy reconciles the contradictions and simultaneously confers the fiber neural device with low modulus (300 kPa), low specific impedance (579 kΩ µm 2 ), and high electrical conductivity (32 700 S m −1 ) – ≈1–3 times higher than hydrogels. Stable single‐unit spike tracking in running cats, which promises new opportunities for neuroscience is demonstrated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李骞发布了新的文献求助10
1秒前
优雅醉山完成签到,获得积分10
3秒前
舒心谷雪完成签到 ,获得积分10
3秒前
6秒前
斯文败类应助olekravchenko采纳,获得10
8秒前
ZZZZAAAAA完成签到,获得积分10
8秒前
李骞完成签到,获得积分20
10秒前
11秒前
hujin发布了新的文献求助10
12秒前
852应助watermelon采纳,获得10
12秒前
13秒前
15秒前
linzjpush完成签到,获得积分10
15秒前
ding应助Lojong采纳,获得10
17秒前
研友_8KK9R8发布了新的文献求助10
17秒前
鲸鱼发布了新的文献求助10
17秒前
18秒前
watermelon完成签到,获得积分10
20秒前
大道独行发布了新的文献求助10
21秒前
21秒前
Lorain完成签到,获得积分10
23秒前
watermelon发布了新的文献求助10
23秒前
潜水的猪关注了科研通微信公众号
25秒前
默默千亦完成签到 ,获得积分10
26秒前
落后三颜发布了新的文献求助10
26秒前
大个应助大道独行采纳,获得10
27秒前
28秒前
28秒前
xxfsx应助陈伟杰采纳,获得10
29秒前
30秒前
研友_ZGRvon完成签到,获得积分0
31秒前
33秒前
落后三颜完成签到,获得积分10
34秒前
陈杰发布了新的文献求助10
34秒前
34秒前
张朔发布了新的文献求助10
34秒前
orixero应助Lojong采纳,获得10
35秒前
小熊发布了新的文献求助10
36秒前
南苏发布了新的文献求助10
37秒前
冷傲的秋灵完成签到 ,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5290557
求助须知:如何正确求助?哪些是违规求助? 4441884
关于积分的说明 13828736
捐赠科研通 4324624
什么是DOI,文献DOI怎么找? 2373757
邀请新用户注册赠送积分活动 1369166
关于科研通互助平台的介绍 1333195