Evaluation of the risk prediction model of pressure injuries in hospitalized patient: A systematic review and meta‐analysis

奇纳 检查表 荟萃分析 科克伦图书馆 梅德林 医学 系统回顾 纳入和排除标准 指南 内科学 替代医学 心理干预 心理学 护理部 病理 认知心理学 法学 政治学
作者
Yuxia Ma,Xiang He,Tingting Yang,Yifang Yang,Ziyan Yang,Tian Gao,Fanghong Yan,Boling Yan,Juan Wang,Lin Han
出处
期刊:Journal of Clinical Nursing [Wiley]
卷期号:34 (6): 2117-2137 被引量:2
标识
DOI:10.1111/jocn.17367
摘要

Abstract Aims and Objectives The main aim of this study is to synthesize the prevalent predictive models for pressure injuries in hospitalized patients, with the goal of identifying common predictive factors linked to pressure injuries in hospitalized patients. This endeavour holds the potential to provide clinical nurses with a valuable reference for providing targeted care to high‐risk patients. Background Pressure injuries (PIs) are a frequently occurring health problem throughout the world. There are mounting studies about risk prediction model of PIs reported and published. However, the prediction performance of the models is still unclear. Design Systematic review and meta‐analysis: The Cochrane Library, PubMed, Embase, CINAHL, Web of Science and Chinese databases including CNKI (China National Knowledge Infrastructure), Wanfang Database, Weipu Database and CBM (China Biology Medicine). Methods This systematic review was conducted following PRISMA recommendations. The databases of Cochrane Library, PubMed, Embase, CINAHL, Web of Science, and CNKI, Weipu Database, Wanfang Database and CBM were searched for all studies published before September 2023. We included studies with cohort, case–control designs, reporting the development of risk model and have been validated externally and internally among the hospitalized patients. Two researchers selected the retrieved studies according to the inclusion and exclusion criteria, and critically evaluated the quality of studies based on the CHARMS checklist. The PRISMA guideline was used to report the systematic review and meta‐analysis. Results Sixty‐two studies were included, which contained 99 pressure injuries risk prediction models. The AUC (area under ROC curve) of modelling in 32 prediction models were reported ranged from .70 to .99, while the AUC of verification in 38 models were reported ranged from .70 to .98. Gender (OR = 1.41, CI: .99 ~ 1.31), age (WMD = 8.81, CI: 8.11 ~ 9.57), diabetes mellitus (OR = 1.64, CI: 1.36 ~ 1.99), mechanical ventilation (OR = 2.71, CI: 2.05 ~ 3.57), length of hospital stay (WMD = 7.65, CI: 7.24 ~ 8.05) were the most common predictors of pressure injuries. Conclusion Studies of PIs risk prediction model in hospitalized patients had high research quality, and the risk prediction models also had good predictive performance. However, some of the included studies lacked of internal or external validation in modelling, which affected the stability and extendibility. The aged, male patient in ICU, albumin, haematocrit, low haemoglobin level, diabetes, mechanical ventilation and length of stay in hospital were high‐risk factors for pressure injuries in hospitalized patients. In the future, it is recommended that clinical nurses, in practice, select predictive models with better performance to identify high‐risk patients based on the actual situation and provide care targeting the high‐risk factors to prevent the occurrence of diseases. Relevance to Clinical Practice The risk prediction model is an effective tool for identifying patients at the risk of developing PIs. With the help of risk prediction tool, nurses can identify the high‐risk patients and common predictive factors, predict the probability of developing PIs, then provide specific preventive measures to improve the outcomes of these patients. Registration Number (PROSPERO) CRD42023445258.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AhhHuang应助Amberwdd采纳,获得10
2秒前
绝塵完成签到,获得积分10
4秒前
华西招生版完成签到,获得积分10
4秒前
5秒前
iiiau完成签到,获得积分10
6秒前
观妙散人完成签到,获得积分10
6秒前
王钢铁完成签到,获得积分20
7秒前
8秒前
科研花完成签到 ,获得积分10
8秒前
黑yan完成签到,获得积分10
8秒前
花椰菜完成签到,获得积分10
8秒前
night发布了新的文献求助10
9秒前
orixero应助Yang采纳,获得30
9秒前
爱学习的小李完成签到 ,获得积分10
9秒前
科研丘卡皮完成签到,获得积分10
11秒前
沚沐发布了新的文献求助10
12秒前
guangshuang发布了新的文献求助10
13秒前
123完成签到,获得积分10
13秒前
14秒前
14秒前
15秒前
DDDD晴天完成签到,获得积分20
15秒前
16秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
6666发布了新的文献求助10
18秒前
科目三应助得鹿梦鱼采纳,获得20
19秒前
19秒前
huuuxy完成签到,获得积分10
20秒前
20秒前
害羞的元蝶完成签到,获得积分10
20秒前
浮游应助元谷雪采纳,获得10
20秒前
longer完成签到 ,获得积分10
21秒前
Yang发布了新的文献求助30
21秒前
peilinyu发布了新的文献求助10
22秒前
22秒前
黑yan发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
24秒前
25秒前
Cpp完成签到 ,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Chemistry and Biochemistry: Research Progress Vol. 7 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5683333
求助须知:如何正确求助?哪些是违规求助? 5030336
关于积分的说明 15180883
捐赠科研通 4842895
什么是DOI,文献DOI怎么找? 2596285
邀请新用户注册赠送积分活动 1549205
关于科研通互助平台的介绍 1507529