Machine Learning-Based Prediction of Large-for-Gestational Age Infants in Mothers with Gestational Diabetes Mellitus

妊娠期糖尿病 胎龄 医学 产科 糖尿病 妊娠期 怀孕 儿科 内分泌学 生物 遗传学
作者
Mei Kang,Chengguang Zhu,Mengyu Lai,Jianrong Weng,Yan Zhuang,Huichen He,Yan Qiu,Yixia Wu,Zhangxuan Qi,Weixia Zhang,Xianming Xu,Zhu Yan-hong,Yufan Wang,Xiaokang Yang
出处
期刊:The Journal of Clinical Endocrinology and Metabolism [Oxford University Press]
标识
DOI:10.1210/clinem/dgae475
摘要

Abstract Context Large-for-gestational-age (LGA), one of the most common complications of gestational diabetes mellitus (GDM), has become a global concern. The predictive performance of common continuous glucose monitoring (CGM) metrics for LGA is limited. Objective We aimed to develop and validate an artificial intelligence (AI) based model to determine the probability of women with GDM giving birth to LGA infants during pregnancy using CGM measurements together with demographic data and metabolic indicators. Methods A total of 371 women with GDM from a prospective cohort at a university hospital were included. CGM was performed during 20-34 gestational weeks, and glycemic fluctuations were evaluated and visualized in women with GDM who gave birth to LGA and non-LGA infants. A convolutional neural network (CNN)-based fusion model was developed to predict LGA. Comparisons among the novel fusion model and three conventional models were made using the area under the receiver-operating characteristic curve (AUCROC) and accuracy. Results Overall, 76 (20.5%) out of 371 GDM women developed LGA neonates. The visualized 24-h glucose profiles differed at midmorning. This difference was consistent among subgroups categorized by pregestational BMI, therapeutic protocol and CGM administration period. The AI based fusion prediction model using 24-h CGM data and 15 clinical variables for LGA prediction (AUCROC 0.852, 95% CI 0.680-0.966, accuracy 84.4%) showed superior discriminative power compared with the three classic models. Conclusions We demonstrated better performance in predicting LGA infants among women with GDM using the AI based fusion model. The characteristics of the CGM profiles allowed us to determine the appropriate window for intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助1111采纳,获得10
刚刚
yyy完成签到,获得积分10
刚刚
ding应助qiulong采纳,获得10
1秒前
yanyuqing完成签到,获得积分10
1秒前
Alvis发布了新的文献求助10
2秒前
2秒前
3秒前
田様应助mingming采纳,获得10
4秒前
4秒前
5秒前
6秒前
糊涂涂发布了新的文献求助10
7秒前
顺利小陈发布了新的文献求助10
7秒前
所所应助Chenzr采纳,获得10
8秒前
Wei完成签到 ,获得积分10
9秒前
dayrim完成签到,获得积分10
11秒前
12秒前
善学以致用应助Alvis采纳,获得10
12秒前
12秒前
zhangqi发布了新的文献求助10
13秒前
在我梦里绕完成签到,获得积分10
14秒前
14秒前
14秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
天天快乐应助科研通管家采纳,获得30
14秒前
汉堡包应助科研通管家采纳,获得10
14秒前
猪猪hero应助科研通管家采纳,获得10
14秒前
大模型应助科研通管家采纳,获得10
15秒前
猪猪hero应助科研通管家采纳,获得10
15秒前
思源应助科研通管家采纳,获得10
15秒前
大观天下完成签到,获得积分10
15秒前
16秒前
菜筹矮发布了新的文献求助10
16秒前
飞0802完成签到,获得积分10
18秒前
大观天下发布了新的文献求助100
21秒前
顺利小陈完成签到,获得积分10
22秒前
七月江城发布了新的文献求助10
23秒前
blklxt发布了新的文献求助10
23秒前
失眠万言完成签到 ,获得积分10
26秒前
隐形曼青应助七月江城采纳,获得10
29秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799241
求助须知:如何正确求助?哪些是违规求助? 3344889
关于积分的说明 10322351
捐赠科研通 3061369
什么是DOI,文献DOI怎么找? 1680250
邀请新用户注册赠送积分活动 806960
科研通“疑难数据库(出版商)”最低求助积分说明 763451