Machine learning and numerical simulation research on specific energy consumption for gradated coarse particle two-phase flow in inclined pipes

物理 机械 流量(数学) 两相流 粒子(生态学) 相(物质) 能源消耗 统计物理学 工程类 量子力学 海洋学 电气工程 地质学
作者
Chuyi Wan,Shengpeng Xiao,Dai Zhou,Hongbo Zhu,Yan Bao,Shuai Huang,Caiyun Huan,Zhaolong Han
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (9) 被引量:1
标识
DOI:10.1063/5.0221031
摘要

In deep-sea mining engineering, accurately predicting the energy required per unit length of pipeline to transport a unit mass of solids (dimensionless specific energy consumption, DSEC) is crucial for ensuring energy conservation and efficiency in the project. Based on our previous work, we utilized the machine learning (ML) and the computational fluid dynamics (CFD)–discrete element method (DEM) method to study the transport characteristics and flow field variations of gradated coarse particles in inclined pipes (gradated particles refer to solid particles mixed in specific size and quantity ratios). First, we collect 1185 sets of data from 13 experimental literature, and after analyzing and processing them, an ensemble model based on four other ML models is developed. Both for pure substance particles (PS) and mixed particles (MP), the prediction accuracy of this ensemble model is relatively higher (PSs are spherical particles with uniform size and density, and MPs are particles with different shapes, sizes, and densities). Then, the CFD-DEM process and the operating conditions include low flow velocity with low volume concentration (2 m/s and 2.5%), low flow velocity with high volume concentration (2 m/s and 7.5%), and high flow velocity with low volume concentration (4 m/s and 2.5%). Under conditions of low flow velocity and low concentrations, as well as high flow velocity and low concentrations, the DSEC hardly changes with the variation of the pipe inclination angle. Under low flow velocity and high-concentration conditions, as the pipe gradually becomes vertical, the value of DSEC gradually increases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悦耳玲完成签到 ,获得积分10
2秒前
半截神经病完成签到,获得积分20
2秒前
CHANGJIAGAO发布了新的文献求助10
2秒前
MiYou完成签到,获得积分10
2秒前
Jasper应助andars0828采纳,获得10
3秒前
rose发布了新的文献求助10
3秒前
3秒前
星禾吾应助敬鱼采纳,获得10
4秒前
5秒前
完美世界应助来颗西柚采纳,获得10
6秒前
嘻嘻哈哈发布了新的文献求助10
6秒前
科研通AI2S应助雍飞烟采纳,获得10
6秒前
澳澳宝宝发布了新的文献求助10
6秒前
今后应助碎碎采纳,获得10
7秒前
bkagyin应助jmy1995采纳,获得10
7秒前
不懈奋进应助Axton采纳,获得30
7秒前
让我顺利毕业完成签到,获得积分10
8秒前
333应助爱学习的YY采纳,获得30
8秒前
田様应助府于杰采纳,获得10
9秒前
9秒前
9秒前
哈哈哈发布了新的文献求助10
9秒前
CodeCraft应助牛奶加蜂蜜采纳,获得10
10秒前
Luckqi6688发布了新的文献求助30
10秒前
11秒前
12秒前
湘玉给你溜肥肠完成签到,获得积分10
13秒前
14秒前
ccc完成签到,获得积分10
14秒前
浮游应助温柔的尔芙采纳,获得10
14秒前
JamesPei应助CaiBangrong采纳,获得10
14秒前
自律的晏子完成签到 ,获得积分10
14秒前
汉堡包应助youyating采纳,获得10
14秒前
15秒前
cong完成签到,获得积分20
15秒前
JamesPei应助六六采纳,获得10
16秒前
16秒前
鲑鱼完成签到 ,获得积分10
16秒前
年代初完成签到,获得积分10
16秒前
快乐难敌发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A study of torsion fracture tests 510
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4756482
求助须知:如何正确求助?哪些是违规求助? 4099482
关于积分的说明 12684433
捐赠科研通 3813691
什么是DOI,文献DOI怎么找? 2105368
邀请新用户注册赠送积分活动 1130140
关于科研通互助平台的介绍 1008210