V2X-ViTv2: Improved Vision Transformers for Vehicle-to-Everything Cooperative Perception

计算机视觉 人工智能 计算机科学 感知 机器视觉 变压器 工程类 心理学 电气工程 电压 神经科学
作者
Runsheng Xu,Chia-Ju Chen,Zhengzhong Tu,Ming–Hsuan Yang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-12
标识
DOI:10.1109/tpami.2024.3479222
摘要

In this paper, we study the application of Vehicle-to-Everything (V2X) communication to improve the perception performance of autonomous vehicles. We present V2X-ViTs, a robust cooperative perception framework with V2X communication using novel vision Transformer models. First, we present V2X-ViTv1 containing holistic attention modules that can effectively fuse information across on-road agents (i.e., vehicles and infrastructure). Specifically, V2X-ViTv1 consists of alternating layers of heterogeneous multi-agent self-attention and multi-scale window self-attention, which captures inter-agent interaction and per-agent spatial relationships. These key modules are designed in a unified Transformer architecture to handle common V2X challenges, including asynchronous information sharing, pose errors, and heterogeneity of V2X components. Second, we propose an advanced architecture, V2X-ViTv2, that enjoys increased ability for multi-scale perception. We also propose advanced data augmentation techniques tailored for V2X applications to improve performance. We construct a large-scale V2X perception dataset using CARLA and OpenCDA to validate our approach. Extensive experimental results on both synthetic and real-world datasets show that V2X-ViTs achieve state-of-the-art performance for 3D object detection and are robust even under harsh, noisy environments. All the code and trained models will be available at https://github.com/DerrickXuNu/OpenCOOD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lll发布了新的文献求助10
刚刚
AAA完成签到,获得积分10
刚刚
妙妙完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
hy_完成签到,获得积分10
2秒前
领导范儿应助wu采纳,获得10
2秒前
wqy发布了新的文献求助10
2秒前
2秒前
3秒前
jundading完成签到,获得积分10
4秒前
科目三应助简单的冬灵采纳,获得10
4秒前
4秒前
华仔应助puyehwu采纳,获得30
4秒前
暴富完成签到,获得积分10
5秒前
852应助杜杜采纳,获得10
5秒前
5秒前
6秒前
研友_LjDyNZ发布了新的文献求助10
7秒前
园游会发布了新的文献求助10
7秒前
hy_发布了新的文献求助10
7秒前
jiangjiang完成签到,获得积分10
8秒前
巷陌发布了新的文献求助10
8秒前
8秒前
9秒前
Orange应助慧慧采纳,获得10
9秒前
Ava应助yanjun_j采纳,获得10
9秒前
10秒前
12秒前
www发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
13秒前
13秒前
13秒前
yooloo完成签到,获得积分10
14秒前
14秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Fatigue of Materials and Structures 260
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
An Integrated Solution for Application of Next-Generation Sequencing in Newborn Screening 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3832129
求助须知:如何正确求助?哪些是违规求助? 3374463
关于积分的说明 10485185
捐赠科研通 3094316
什么是DOI,文献DOI怎么找? 1703421
邀请新用户注册赠送积分活动 819464
科研通“疑难数据库(出版商)”最低求助积分说明 771533