A new multi-layer adaptation cross-domain model for bearing fault diagnosis under different operating conditions

方位(导航) 适应(眼睛) 断层(地质) 图层(电子) 域适应 领域(数学分析) 计算机科学 可靠性工程 人工智能 工程类 地质学 材料科学 数学 地震学 生物 神经科学 复合材料 数学分析 分类器(UML)
作者
Huaiqian Bao,Lingtan Kong,Limei Lu,Jinrui Wang,Zongzhen Zhang,Baokun Han
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (10): 106116-106116 被引量:4
标识
DOI:10.1088/1361-6501/ad5fad
摘要

Abstract Bearing faults under different operating conditions often cannot be diagnosed by models trained under a single operational condition. Additionally, the extraction of domain-invariant features in domain adaptation (DA) algorithms is also a challenge. To address the aforementioned issues, a multi-layer adaptation model based on an improved sparse autoencoders (SAEs) and dual-domain distance mechanism (ISAE-DDM) is proposed. First, the feature extraction capability of traditional SAEs is enhanced by a strategy that combines mean squared error with mean absolute error. Subsequently, the features of data under multiple hidden layers are extracted by the ISAE. Then, the distribution discrepancy between the source domain and target domain are measured by a dual-domain distance approach that combines Wasserstein distance with multi-kernel maximum mean discrepancy. Then, the domain distance loss under each hidden layer is assigned different weighting parameters. Finally, a joint metric DA mechanism across multiple hidden layers is constructed to achieve a better domain alignment. The performance of the proposed method is demonstrated by two different bearing experiments. Moreover, this model exhibits higher stability, and generalization capabilities compared to other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bjf555发布了新的文献求助10
刚刚
Jasper应助JKA23采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
打打应助科研通管家采纳,获得10
刚刚
1秒前
wanci应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
changping应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
1秒前
changping应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得30
1秒前
1秒前
Akim应助科研通管家采纳,获得10
2秒前
zhonglv7应助科研通管家采纳,获得10
2秒前
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
小杭76应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
2秒前
4秒前
4秒前
4秒前
4秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5308126
求助须知:如何正确求助?哪些是违规求助? 4453339
关于积分的说明 13857031
捐赠科研通 4341040
什么是DOI,文献DOI怎么找? 2383601
邀请新用户注册赠送积分活动 1378277
关于科研通互助平台的介绍 1346269