Deciphering Cathepsin K inhibitors: a combined QSAR, docking and MD simulation based machine learning approaches for drug design

数量结构-活动关系 对接(动物) 计算机科学 机器学习 化学 人工智能 虚拟筛选 药物发现 计算生物学 生物 生物化学 医学 护理部
作者
Sidra Ilyas,J. Lee,Yeonsang Hwang,Y. Choi,Donghun Lee
出处
期刊:Sar and Qsar in Environmental Research [Taylor & Francis]
卷期号:35 (9): 771-793
标识
DOI:10.1080/1062936x.2024.2405626
摘要

Cathepsin K (CatK), a lysosomal cysteine protease, contributes to skeletal abnormalities, heart diseases, lung inflammation, and central nervous system and immune disorders. Currently, CatK inhibitors are associated with severe adverse effects, therefore limiting their clinical utility. This study focuses on exploring quantitative structure–activity relationships (QSAR) on a dataset of CatK inhibitors (1804) compiled from the ChEMBL database to predict the inhibitory activities. After data cleaning and pre-processing, a total of 1568 structures were selected for exploratory data analysis which revealed physicochemical properties, distributions and statistical significance between the two groups of inhibitors. PubChem fingerprinting with 11 different machine-learning classification models was computed. The comparative analysis showed the ET model performed well with accuracy values for the training set (0.999), cross-validation (0.970) and test set (0.977) in line with OECD guidelines. Moreover, to gain structural insights on the origin of CatK inhibition, 15 diverse molecules were selected for molecular docking. The CatK inhibitors (1 and 2) exhibited strong binding energies of −8.3 and −7.2 kcal/mol, respectively. MD simulation (300 ns) showed strong structural stability, flexibility and interactions in selected complexes. This synergy between QSAR, docking, MD simulation and machine learning models strengthen our evidence for developing novel and resilient CatK inhibitors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
高贵的花卷完成签到,获得积分10
1秒前
科研通AI6应助寒冷的觅露采纳,获得50
2秒前
3秒前
万能图书馆应助幽幽采纳,获得10
4秒前
浮游应助琳666采纳,获得30
5秒前
5秒前
7秒前
ranjack完成签到,获得积分20
8秒前
8秒前
8秒前
9秒前
10秒前
11秒前
CodeCraft应助ranjack采纳,获得10
11秒前
爱学习发布了新的文献求助10
12秒前
13秒前
十八冠六发布了新的文献求助10
14秒前
15秒前
16秒前
豆小豆发布了新的文献求助10
17秒前
18秒前
幽幽发布了新的文献求助10
19秒前
FashionBoy应助能量球采纳,获得10
21秒前
旧辞发布了新的文献求助10
22秒前
Leeon完成签到,获得积分10
22秒前
燮老板的账号完成签到,获得积分10
22秒前
snow完成签到 ,获得积分10
23秒前
ranjack发布了新的文献求助10
24秒前
没有答案发布了新的文献求助10
24秒前
柳贯一完成签到,获得积分10
25秒前
CJW发布了新的文献求助10
27秒前
28秒前
29秒前
天天快乐应助威武忆山采纳,获得10
31秒前
大模型应助没有答案采纳,获得10
31秒前
能量球发布了新的文献求助10
35秒前
35秒前
喀喀喀完成签到,获得积分10
35秒前
科研通AI5应助旧辞采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
The Handbook of Communication Skills 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Representations of the Orient in Western Music: Violence and Sensuality 300
the WHO Classification of Head and Neck Tumors (5th Edition) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4798249
求助须知:如何正确求助?哪些是违规求助? 4117925
关于积分的说明 12739224
捐赠科研通 3848306
什么是DOI,文献DOI怎么找? 2120493
邀请新用户注册赠送积分活动 1142547
关于科研通互助平台的介绍 1032158