Detecting Multi-Scale Defects in Material Extrusion Additive Manufacturing of Fiber-Reinforced Thermoplastic Composites: A Review of Challenges and Advanced Non-Destructive Testing Techniques

挤压 材料科学 复合材料 热塑性塑料 热塑性复合材料 纤维 比例(比率) 量子力学 物理
作者
Demeke Abay Ashebir,Andreas Hendlmeier,Michelle Dunn,Reza Arablouei,Stepan Vladimirovitch Lomov,Adriano Di Pietro,Mostafa Nikzad
出处
期刊:Polymers [Multidisciplinary Digital Publishing Institute]
卷期号:16 (21): 2986-2986 被引量:4
标识
DOI:10.3390/polym16212986
摘要

Additive manufacturing (AM) defects present significant challenges in fiber-reinforced thermoplastic composites (FRTPCs), directly impacting both their structural and non-structural performance. In structures produced through material extrusion-based AM, specifically fused filament fabrication (FFF), the layer-by-layer deposition can introduce defects such as porosity (up to 10-15% in some cases), delamination, voids, fiber misalignment, and incomplete fusion between layers. These defects compromise mechanical properties, leading to reduction of up to 30% in tensile strength and, in some cases, up to 20% in fatigue life, severely diminishing the composite's overall performance and structural integrity. Conventional non-destructive testing (NDT) techniques often struggle to detect such multi-scale defects efficiently, especially when resolution, penetration depth, or material heterogeneity pose challenges. This review critically examines manufacturing defects in FRTPCs, classifying FFF-induced defects based on morphology, location, and size. Advanced NDT techniques, such as micro-computed tomography (micro-CT), which is capable of detecting voids smaller than 10 µm, and structural health monitoring (SHM) systems integrated with self-sensing fibers, are discussed. The role of machine-learning (ML) algorithms in enhancing the sensitivity and reliability of NDT methods is also highlighted, showing that ML integration can improve defect detection by up to 25-30% compared to traditional NDT techniques. Finally, the potential of self-reporting FRTPCs, equipped with continuous fibers for real-time defect detection and in situ SHM, is investigated. By integrating ML-enhanced NDT with self-reporting FRTPCs, the accuracy and efficiency of defect detection can be significantly improved, fostering broader adoption of AM in aerospace applications by enabling the production of more reliable, defect-minimized FRTPC components.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邵翎365完成签到,获得积分10
3秒前
如烈火如止水完成签到,获得积分10
4秒前
菲1208完成签到,获得积分10
5秒前
娇气的天亦完成签到 ,获得积分10
7秒前
冷傲菠萝完成签到 ,获得积分10
8秒前
9秒前
饱满的新之完成签到 ,获得积分10
9秒前
子虚一尘完成签到,获得积分10
13秒前
喜悦香萱发布了新的文献求助10
14秒前
fsznc1完成签到 ,获得积分0
19秒前
HHYYAA完成签到,获得积分10
23秒前
Orange应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
26秒前
HHYYAA发布了新的文献求助10
27秒前
李健的小迷弟应助HHYYAA采纳,获得10
30秒前
smin完成签到,获得积分10
31秒前
Jeamren完成签到,获得积分10
32秒前
风趣丝发布了新的文献求助10
32秒前
zz完成签到,获得积分10
33秒前
黑猫小苍完成签到,获得积分10
33秒前
沉静寒云完成签到 ,获得积分10
33秒前
babyhead完成签到,获得积分10
37秒前
赘婿应助wowser采纳,获得10
40秒前
Orange应助韩hqf采纳,获得10
42秒前
随风完成签到,获得积分10
44秒前
45秒前
Bob完成签到,获得积分10
46秒前
JHcHuN完成签到,获得积分10
47秒前
48秒前
48秒前
Lucas应助黑猫小苍采纳,获得10
49秒前
JHcHuN发布了新的文献求助10
50秒前
zzf完成签到,获得积分10
50秒前
萧水白完成签到,获得积分10
50秒前
wowser发布了新的文献求助10
53秒前
zzf发布了新的文献求助10
53秒前
meimale完成签到,获得积分10
56秒前
雪白的紫翠完成签到 ,获得积分10
57秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780920
求助须知:如何正确求助?哪些是违规求助? 3326387
关于积分的说明 10226967
捐赠科研通 3041589
什么是DOI,文献DOI怎么找? 1669510
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758734