Integrated Transcriptomic Landscape and Deep Learning Based Survival Prediction in Uterine Sarcomas

转录组 生物 总体生存率 肿瘤科 医学 计算生物学 基因 基因表达 遗传学
作者
Yaolin Song,Guangqi Li,Zhenqi Zhang,Yinbo Liu,Huiqing Jia,Chao Zhang,Jigang Wang,Yanjiao Hu,Fengyun Hao,Xianglan Liu,Yunxia Xie,Ding Ma,Ganghua Li,Zaixian Tai,Xiaoming Xing
出处
期刊:Cancer Research and Treatment [Korean Cancer Association]
卷期号:57 (1): 250-266 被引量:5
标识
DOI:10.4143/crt.2024.343
摘要

Purpose The genomic characteristics of uterine sarcomas have not been fully elucidated. This study aimed to explore the genomic landscape of the uterine sarcomas (USs).Materials and Methods Comprehensive genomic analysis through RNA-sequencing was conducted. Gene fusion, differentially expressed genes (DEGs), signaling pathway enrichment, immune cell infiltration, and prognosis were analyzed. A deep learning model was constructed to predict the survival of US patients.Results A total of 71 US samples were examined, including 47 endometrial stromal sarcomas (ESS), 18 uterine leiomyosarcomas (uLMS), three adenosarcomas, two carcinosarcomas, and one uterine tumor resembling an ovarian sex-cord tumor. ESS (including high-grade ESS [HGESS] and low-grade ESS [LGESS]) and uLMS showed distinct gene fusion signatures; a novel gene fusion site, MRPS18A–PDC-AS1 could be a potential diagnostic marker for the pathology differential diagnosis of uLMS and ESS; 797 and 477 uterine sarcoma DEGs (uDEGs) were identified in the ESS vs. uLMS and HGESS vs. LGESS groups, respectively. The uDEGs were enriched in multiple pathways. Fifteen genes including LAMB4 were confirmed with prognostic value in USs; immune infiltration analysis revealed the prognositic value of myeloid dendritic cells, plasmacytoid dendritic cells, natural killer cells, macrophage M1, monocytes and hematopoietic stem cells in USs; the deep learning model named Max-Mean Non-Local multi-instance learning (MMN-MIL) showed satisfactory performance in predicting the survival of US patients, with the area under the receiver operating curve curve reached 0.909 and accuracy achieved 0.804.Conclusion USs harbored distinct gene fusion characteristics and gene expression features between HGESS, LGESS, and uLMS. The MMN-MIL model could effectively predict the survival of US patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助负责御姐采纳,获得10
刚刚
hawa发布了新的文献求助20
刚刚
x1aomaxx应助Srui采纳,获得10
1秒前
CodeCraft应助沐翎采纳,获得10
1秒前
sj发布了新的文献求助20
1秒前
zhuzhu完成签到,获得积分10
2秒前
之柔完成签到,获得积分10
2秒前
酷波er应助goodbuhui采纳,获得10
2秒前
阿托品完成签到 ,获得积分10
2秒前
3秒前
纸鸢关注了科研通微信公众号
3秒前
4秒前
ding应助荆哲采纳,获得10
4秒前
大模型应助123456采纳,获得10
4秒前
4秒前
瑞rui发布了新的文献求助10
4秒前
max完成签到 ,获得积分10
5秒前
5秒前
Ambition完成签到,获得积分10
5秒前
万能图书馆应助2306520采纳,获得10
5秒前
科研通AI6应助jiabu采纳,获得10
5秒前
禾沐发布了新的文献求助10
6秒前
6秒前
很傻的狗完成签到,获得积分0
7秒前
Lucas应助wjx采纳,获得10
7秒前
干净飞荷完成签到,获得积分10
7秒前
7秒前
8秒前
1233完成签到,获得积分10
8秒前
诺诺完成签到 ,获得积分10
8秒前
zoeyyy发布了新的文献求助10
9秒前
10秒前
10秒前
科研通AI6应助mmnn采纳,获得10
10秒前
10秒前
大方万仇发布了新的文献求助10
11秒前
科目三应助我的天呐采纳,获得10
11秒前
科研小辉发布了新的文献求助10
11秒前
hyx9504完成签到,获得积分10
12秒前
dingxiaoye完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5262276
求助须知:如何正确求助?哪些是违规求助? 4423286
关于积分的说明 13769277
捐赠科研通 4297943
什么是DOI,文献DOI怎么找? 2358148
邀请新用户注册赠送积分活动 1354541
关于科研通互助平台的介绍 1315696