Metric3D v2: A Versatile Monocular Geometric Foundation Model for Zero-Shot Metric Depth and Surface Normal Estimation

人工智能 公制(单位) 计算机视觉 计算机科学 仿射变换 刚性变换 数学 算法 几何学 运营管理 经济
作者
Mu Hu,Wei Yin,Chi Zhang,Zhipeng Cai,Xiaoxiao Long,Hao Chen,Kaixuan Wang,Gang Yu,Chunhua Shen,Shaojie Shen
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:46 (12): 10579-10596 被引量:6
标识
DOI:10.1109/tpami.2024.3444912
摘要

We introduce Metric3D v2, a geometric foundation model designed for zero-shot metric depth and surface normal estimation from single images, critical for accurate 3D recovery. Depth and normal estimation, though complementary, present distinct challenges. State-of-the-art monocular depth methods achieve zero-shot generalization through affine-invariant depths, but fail to recover real-world metric scale. Conversely, current normal estimation techniques struggle with zero-shot performance due to insufficient labeled data. We propose targeted solutions for both metric depth and normal estimation. For metric depth, we present a canonical camera space transformation module that resolves metric ambiguity across various camera models and large-scale datasets, which can be easily integrated into existing monocular models. For surface normal estimation, we introduce a joint depth-normal optimization module that leverages diverse data from metric depth, allowing normal estimators to improve beyond traditional labels. Our model, trained on over 16 million images from thousands of camera models with varied annotations, excels in zero-shot generalization to new camera settings. As shown in Fig. 1, It ranks the 1st in multiple zero-shot and standard benchmarks for metric depth and surface normal prediction. Our method enables the accurate recovery of metric 3D structures on randomly collected internet images, paving the way for plausible single-image metrology. Our model also relieves the scale drift issues of monocular-SLAM (Fig. 3), leading to high-quality metric scale dense mapping. Such applications highlight the versatility of Metric3D v2 models as geometric foundation models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Yolo完成签到,获得积分10
1秒前
李密关注了科研通微信公众号
1秒前
离个大谱发布了新的文献求助10
1秒前
3秒前
3秒前
137号完成签到,获得积分20
3秒前
Owen应助米米碎片采纳,获得10
5秒前
6秒前
NexusExplorer应助退役干饭王采纳,获得10
7秒前
阿璟发布了新的文献求助10
7秒前
甜美宛儿发布了新的文献求助10
8秒前
9秒前
prawn218发布了新的文献求助10
10秒前
真洋子哈发布了新的文献求助10
11秒前
冷傲傲儿完成签到,获得积分10
11秒前
丘比特应助Yolo采纳,获得10
12秒前
leoelizabeth完成签到 ,获得积分10
13秒前
14秒前
药佛子发布了新的文献求助10
14秒前
不敢自称科研人完成签到,获得积分10
14秒前
15秒前
A溶大美噶发布了新的文献求助10
19秒前
斯文败类应助清爽明辉采纳,获得10
19秒前
科研通AI5应助prawn218采纳,获得10
20秒前
冰魂应助zhhr采纳,获得10
20秒前
三三发布了新的文献求助10
21秒前
如筠发布了新的文献求助10
23秒前
真洋子哈完成签到,获得积分10
23秒前
24秒前
阿璟完成签到,获得积分10
26秒前
czp发布了新的文献求助10
28秒前
28秒前
30秒前
糊涂小医仙完成签到,获得积分10
30秒前
31秒前
希望天下0贩的0应助sjfczyh采纳,获得10
32秒前
小巧的牛排完成签到 ,获得积分10
34秒前
34秒前
35秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Dietary intake and glutamine-serine metabolism control pathologic vascular stiffness 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845261
求助须知:如何正确求助?哪些是违规求助? 3387415
关于积分的说明 10549319
捐赠科研通 3108109
什么是DOI,文献DOI怎么找? 1712456
邀请新用户注册赠送积分活动 824404
科研通“疑难数据库(出版商)”最低求助积分说明 774776