Multiomics and eXplainable artificial intelligence for decision support in insulin resistance early diagnosis: A pediatric population-based longitudinal study

胰岛素抵抗 机器学习 人工智能 计算机科学 人口 杠杆(统计) 医学 肥胖 内科学 环境卫生
作者
Álvaro Torres-Martos,Augusto Anguita‐Ruiz,Mireia Bustos-Aibar,Alberto Ramírez-Mena,M Arteaga,Gloria Bueno,Rosaura Leis,Concepción M. Aguilera,Rafael Alcalá,Jesús Alcalá‐Fdez
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:156: 102962-102962 被引量:1
标识
DOI:10.1016/j.artmed.2024.102962
摘要

Pediatric obesity can drastically heighten the risk of cardiometabolic alterations later in life, with insulin resistance standing as the cornerstone linking adiposity to the increased cardiovascular risk. Puberty has been pointed out as a critical stage after which obesity-associated insulin resistance is more difficult to revert. Timely prediction of insulin resistance in pediatric obesity is therefore vital for mitigating the risk of its associated comorbidities. The construction of effective and robust predictive systems for a complex health outcome like insulin resistance during the early stages of life demands the adoption of longitudinal designs for more causal inferences, and the integration of factors of varying nature involved in its onset. In this work, we propose an eXplainable Artificial Intelligence-based decision support pipeline for early diagnosis of insulin resistance in a longitudinal cohort of 90 children. For that, we leverage multi-omics (genomics and epigenomics) and clinical data from the pre-pubertal stage. Different data layers combinations, pre-processing techniques (missing values, feature selection, class imbalance, etc.), algorithms, training procedures were considered following good practices for Machine Learning. SHapley Additive exPlanations were provided for specialists to understand both the decision-making mechanisms of the system and the impact of the features on each automatic decision, an essential issue in high-risk areas such as this one where system decisions may affect people's lives. The system showed a relevant predictive ability (AUC and G-mean of 0.92). A deep exploration, both at the global and the local level, revealed promising biomarkers of insulin resistance in our population, highlighting classical markers, such as Body Mass Index z-score or leptin/adiponectin ratio, and novel ones such as methylation patterns of relevant genes, such as HDAC4, PTPRN2, MATN2, RASGRF1 and EBF1. Our findings highlight the importance of integrating multi-omics data and following eXplainable Artificial Intelligence trends when building decision support systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助XU博士采纳,获得10
刚刚
JUNO发布了新的文献求助10
1秒前
1秒前
科研通AI5应助renlangfen采纳,获得10
2秒前
斯文败类应助Haterain采纳,获得10
2秒前
3秒前
单纯的盼雁完成签到,获得积分10
3秒前
sxs完成签到 ,获得积分10
4秒前
4秒前
5秒前
SYLH应助卖萌的秋田采纳,获得10
7秒前
自然芷文发布了新的文献求助10
7秒前
开朗早晨发布了新的文献求助10
7秒前
Hey发布了新的文献求助10
8秒前
施中明发布了新的文献求助10
8秒前
可爱的函函应助莎莎采纳,获得10
9秒前
10秒前
烟雨平生完成签到,获得积分10
10秒前
庄周发布了新的文献求助10
10秒前
fry完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
14秒前
无奈的凌波完成签到 ,获得积分10
15秒前
隔壁老六发布了新的文献求助10
16秒前
自然芷文完成签到,获得积分10
16秒前
17秒前
乐乐应助QX采纳,获得10
18秒前
18秒前
Akim应助开朗早晨采纳,获得10
18秒前
19秒前
19秒前
MYhang发布了新的文献求助10
19秒前
狂野子默完成签到,获得积分10
19秒前
20秒前
够了完成签到 ,获得积分10
20秒前
科研力力发布了新的文献求助10
20秒前
20秒前
20秒前
高分求助中
Mass producing individuality 600
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
TM 5-855-1(Fundamentals of protective design for conventional weapons) 200
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826191
求助须知:如何正确求助?哪些是违规求助? 3368614
关于积分的说明 10451355
捐赠科研通 3087956
什么是DOI,文献DOI怎么找? 1698907
邀请新用户注册赠送积分活动 817190
科研通“疑难数据库(出版商)”最低求助积分说明 770065