TestART: Improving LLM-based Unit Test via Co-evolution of Automated Generation and Repair Iteration

考试(生物学) 单元测试 单位(环理论) 可靠性工程 计算机科学 数学 工程类 操作系统 生物 数学教育 生态学 软件
作者
Siqi Gu,Chunrong Fang,Quanjun Zhang,Fangyuan Tian,Jianyi Zhou,Zhenyu Chen
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2408.03095
摘要

Unit test is crucial for detecting bugs in individual program units but consumes time and effort. The existing automated unit test generation methods are mainly based on search-based software testing (SBST) and language models to liberate developers. Recently, large language models (LLMs) have demonstrated remarkable reasoning and generation capabilities. However, several problems limit their ability to generate high-quality test cases: (1) LLMs may generate invalid test cases under insufficient context, resulting in compilation errors; (2) Lack of test and coverage feedback information may cause runtime errors and low coverage rates. (3) The repetitive suppression problem causes LLMs to get stuck into the repetition loop of self-repair or re-generation attempts. In this paper, we propose TestART, a novel unit test generation method that leverages the strengths of LLMs while overcoming the limitations mentioned. TestART improves LLM-based unit test via co-evolution of automated generation and repair iteration. TestART leverages the template-based repair technique to fix bugs in LLM-generated test cases, using prompt injection to guide the next-step automated generation and avoid repetition suppression. Furthermore, TestART extracts coverage information from the passed test cases and utilizes it as testing feedback to enhance the sufficiency of the final test case. This synergy between generation and repair elevates the quality, effectiveness, and readability of the produced test cases significantly beyond previous methods. In comparative experiments, the pass rate of TestART-generated test cases is 78.55%, which is approximately 18% higher than both the ChatGPT-4.0 model and the same ChatGPT-3.5-based method ChatUniTest. It also achieves an impressive line coverage rate of 90.96% on the focal methods that passed the test, exceeding EvoSuite by 3.4%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助Siri烤布蕾采纳,获得10
刚刚
星辰大海应助王向阳采纳,获得10
刚刚
平淡妙松发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
t通应助bofu采纳,获得10
1秒前
哒哒发布了新的文献求助10
2秒前
2秒前
Wolfgang发布了新的文献求助30
3秒前
Zp关闭了Zp文献求助
3秒前
3秒前
4秒前
heart同学发布了新的文献求助10
4秒前
852应助虚心的岩采纳,获得10
4秒前
6秒前
6秒前
xiaooooo完成签到,获得积分20
6秒前
BJYX发布了新的文献求助20
6秒前
科研小白完成签到,获得积分10
7秒前
周小鱼发布了新的文献求助10
7秒前
xxxxxxh发布了新的文献求助10
9秒前
Rational发布了新的文献求助10
9秒前
10秒前
10秒前
跑快点发布了新的文献求助10
11秒前
卡皮巴拉发布了新的文献求助10
11秒前
Billy应助bofu采纳,获得30
11秒前
想看文献的人完成签到,获得积分10
12秒前
科研通AI5应助nana采纳,获得10
12秒前
summitekey完成签到 ,获得积分10
13秒前
善学以致用应助lyz666采纳,获得10
13秒前
平淡妙松完成签到,获得积分20
13秒前
山乞凡完成签到 ,获得积分10
14秒前
充电宝应助飞天大野猪采纳,获得10
14秒前
14秒前
14秒前
xxxxxxh完成签到,获得积分10
14秒前
15秒前
15秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820683
求助须知:如何正确求助?哪些是违规求助? 3363576
关于积分的说明 10423882
捐赠科研通 3081997
什么是DOI,文献DOI怎么找? 1695408
邀请新用户注册赠送积分活动 815083
科研通“疑难数据库(出版商)”最低求助积分说明 768856