Causal Discovery From Unknown Interventional Datasets Over Overlapping Variable Sets

计算机科学 因果结构 变量(数学) 集合(抽象数据类型) 水准点(测量) 构造(python库) 机器学习 人工智能 数据挖掘 理论计算机科学 数学 数学分析 物理 大地测量学 量子力学 程序设计语言 地理
作者
Fuyuan Cao,Yunxia Wang,Kui Yu,Jiye Liang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:36 (12): 7725-7742 被引量:1
标识
DOI:10.1109/tkde.2024.3443997
摘要

Inferring causal structures from experimentation is a challenging task in many fields. Most causal structure learning algorithms with unknown interventions are proposed to discover causal relationships over an identical variable set. However, often due to privacy, ethical, financial, and practical concerns, the variable sets observed by multiple sources or domains are not entirely identical. While a few algorithms are proposed to handle the partially overlapping variable sets, they focus on the case of known intervention targets. Therefore, to be close to the real-world environment, we consider discovering causal relationships over overlapping variable sets under the unknown intervention setting and exploring a scenario where a problem is studied across multiple domains. Here, we propose an algorithm for discovering the causal relationships over the integrated set of variables from unknown interventions, mainly handling the entangled inconsistencies caused by the incomplete observation of variables and unknown intervention targets. Specifically, we first distinguish two types of inconsistencies and then deal with respectively them by presenting some lemmas. Finally, we construct a fusion rule to combine learned structures of multiple domains, obtaining the final structures over the integrated set of variables. Theoretical analysis and experimental results on synthetic, benchmark, and real-world datasets have verified the effectiveness of the proposed algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Harper完成签到,获得积分10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
Xiaoxiao应助快乐的幻波采纳,获得20
1秒前
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
Leif应助科研通管家采纳,获得20
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
2秒前
七月流火应助科研通管家采纳,获得10
2秒前
依依应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
2秒前
CWNU_HAN应助科研通管家采纳,获得30
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
CWNU_HAN应助科研通管家采纳,获得30
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
3秒前
蒋海完成签到 ,获得积分10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
诸葛御风应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
3秒前
积极玲完成签到,获得积分10
3秒前
4秒前
Gino完成签到,获得积分10
4秒前
4秒前
szmsnail发布了新的文献求助10
5秒前
执着的忆雪完成签到,获得积分10
6秒前
6秒前
小人物完成签到,获得积分10
6秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801238
求助须知:如何正确求助?哪些是违规求助? 3346927
关于积分的说明 10331008
捐赠科研通 3063228
什么是DOI,文献DOI怎么找? 1681462
邀请新用户注册赠送积分活动 807600
科研通“疑难数据库(出版商)”最低求助积分说明 763770