A practical machine learning approach for predicting the quality of 3D (bio)printed scaffolds

计算机科学 人工智能 机器学习 质量(理念) 3d打印 材料科学 生物医学工程 工程制图 系统工程 工程类 哲学 认识论
作者
Saeed Rafieyan,Elham Ansari,Ebrahim Vasheghani‐Farahani
出处
期刊:Biofabrication [IOP Publishing]
卷期号:16 (4): 045014-045014 被引量:4
标识
DOI:10.1088/1758-5090/ad6374
摘要

Abstract 3D (Bio)printing is a highly effective method for fabricating tissue engineering scaffolds, renowned for their exceptional precision and control. Artificial intelligence (AI) has become a crucial technology in this field, capable of learning and replicating complex patterns that surpass human capabilities. However, the integration of AI in tissue engineering is often hampered by the lack of comprehensive and reliable data. This study addresses these challenges by providing one of the most extensive datasets on 3D-printed scaffolds. It provides the most comprehensive open-source dataset and employs various AI techniques, from unsupervised to supervised learning. This dataset includes detailed information on 1171 scaffolds, featuring a variety of biomaterials and concentrations—including 60 biomaterials such as natural and synthesized biomaterials, crosslinkers, enzymes, etc.—along with 49 cell lines, cell densities, and different printing conditions. We used over 40 machine learning and deep learning algorithms, tuning their hyperparameters to reveal hidden patterns and predict cell response, printability, and scaffold quality. The clustering analysis using KMeans identified five distinct ones. In classification tasks, algorithms such as XGBoost, Gradient Boosting, Extra Trees Classifier, Random Forest Classifier, and LightGBM demonstrated superior performance, achieving higher accuracy and F1 scores. A fully connected neural network with six hidden layers from scratch was developed, precisely tuning its hyperparameters for accurate predictions. The developed dataset and the associated code are publicly available on https://github.com/saeedrafieyan/MLATE to promote future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助大侦探皮卡丘采纳,获得10
1秒前
1秒前
trans完成签到,获得积分10
4秒前
4秒前
5秒前
CipherSage应助景C采纳,获得10
7秒前
re完成签到,获得积分10
8秒前
wwss发布了新的文献求助10
9秒前
9秒前
英姑应助海绵baobao采纳,获得10
10秒前
cdercder应助泽锦臻采纳,获得10
11秒前
科研通AI5应助桥辉采纳,获得10
11秒前
12秒前
13秒前
yn发布了新的文献求助10
15秒前
Jsl完成签到,获得积分10
17秒前
17秒前
三三发布了新的文献求助10
17秒前
gty发布了新的文献求助10
18秒前
喵喵666完成签到,获得积分10
18秒前
洪汉发布了新的文献求助10
20秒前
21秒前
22秒前
甜美青槐发布了新的文献求助10
24秒前
情红锐完成签到,获得积分10
24秒前
24秒前
25秒前
Ava应助yn采纳,获得10
25秒前
大模型应助Time采纳,获得10
25秒前
桥辉发布了新的文献求助10
26秒前
27秒前
传奇3应助科研通管家采纳,获得10
27秒前
科研通AI5应助科研通管家采纳,获得30
27秒前
搜集达人应助科研通管家采纳,获得10
27秒前
27秒前
hansJAMA发布了新的文献求助10
27秒前
科研通AI5应助科研通管家采纳,获得10
28秒前
深情安青应助科研通管家采纳,获得10
28秒前
猪猪hero应助科研通管家采纳,获得10
28秒前
香蕉觅云应助科研通管家采纳,获得10
28秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842910
求助须知:如何正确求助?哪些是违规求助? 3384948
关于积分的说明 10538145
捐赠科研通 3105498
什么是DOI,文献DOI怎么找? 1710345
邀请新用户注册赠送积分活动 823598
科研通“疑难数据库(出版商)”最低求助积分说明 774157