Non-invasive multimodal CT deep learning biomarker to predict pathological complete response of non-small cell lung cancer following neoadjuvant immunochemotherapy: a multicenter study

医学 接收机工作特性 新辅助治疗 生物标志物 肺癌 肿瘤科 成像生物标志物 癌症 人工智能 预测值 放射科 内科学 计算机科学 磁共振成像 乳腺癌 化学 生物化学
作者
Guanchao Ye,Guangyao Wu,Qi Yu,Kuo Li,Mingliang Wang,Chun‐yang Zhang,Feng Li,Leonard Wee,André Dekker,Chu Han,Zaiyi Liu,Yongde Liao,Zhenwei Shi
出处
期刊:Journal for ImmunoTherapy of Cancer [BMJ]
卷期号:12 (9): e009348-e009348 被引量:15
标识
DOI:10.1136/jitc-2024-009348
摘要

Objectives Although neoadjuvant immunochemotherapy has been widely applied in non-small cell lung cancer (NSCLC), predicting treatment response remains a challenge. We used pretreatment multimodal CT to explore deep learning-based immunochemotherapy response image biomarkers. Methods This study retrospectively obtained non-contrast enhanced and contrast enhancedbubu CT scans of patients with NSCLC who underwent surgery after receiving neoadjuvant immunochemotherapy at multiple centers between August 2019 and February 2023. Deep learning features were extracted from both non-contrast enhanced and contrast enhanced CT scans to construct the predictive models (LUNAI-uCT model and LUNAI-eCT model), respectively. After the feature fusion of these two types of features, a fused model (LUNAI-fCT model) was constructed. The performance of the model was evaluated using the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, positive predictive value, and negative predictive value. SHapley Additive exPlanations analysis was used to quantify the impact of CT imaging features on model prediction. To gain insights into how our model makes predictions, we employed Gradient-weighted Class Activation Mapping to generate saliency heatmaps. Results The training and validation datasets included 113 patients from Center A at the 8:2 ratio, and the test dataset included 112 patients (Center B n=73, Center C n=20, Center D n=19). In the test dataset, the LUNAI-uCT, LUNAI-eCT, and LUNAI-fCT models achieved AUCs of 0.762 (95% CI 0.654 to 0.791), 0.797 (95% CI 0.724 to 0.844), and 0.866 (95% CI 0.821 to 0.883), respectively. Conclusions By extracting deep learning features from contrast enhanced and non-contrast enhanced CT, we constructed the LUNAI-fCT model as an imaging biomarker, which can non-invasively predict pathological complete response in neoadjuvant immunochemotherapy for NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MaSaR发布了新的文献求助30
1秒前
ajy发布了新的文献求助10
1秒前
2秒前
3秒前
yueyue发布了新的文献求助10
4秒前
8R60d8应助顺心的皮卡丘采纳,获得10
4秒前
义气的钥匙完成签到,获得积分10
6秒前
Forty完成签到,获得积分20
6秒前
wjj119完成签到,获得积分10
6秒前
7秒前
兴奋雅寒完成签到,获得积分10
7秒前
CodeCraft应助研友_Z1WrgL采纳,获得30
9秒前
祁纯发布了新的文献求助10
9秒前
哎呀完成签到,获得积分20
9秒前
hdy331完成签到,获得积分10
9秒前
木子完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
刘若鑫完成签到 ,获得积分10
10秒前
10秒前
科研通AI5应助yueyue采纳,获得10
11秒前
CodeCraft应助专注的语堂采纳,获得10
11秒前
13秒前
俏皮的聪展完成签到,获得积分10
13秒前
祁纯完成签到,获得积分10
14秒前
Famiglistmo完成签到,获得积分10
15秒前
小马甲应助Runrun采纳,获得30
16秒前
denny完成签到,获得积分10
16秒前
小羊发布了新的文献求助10
17秒前
17秒前
18秒前
1ssd发布了新的文献求助10
20秒前
哎呀发布了新的文献求助10
20秒前
denny发布了新的文献求助10
21秒前
21秒前
22秒前
22秒前
量子星尘发布了新的文献求助10
23秒前
Liz发布了新的文献求助10
24秒前
24秒前
苹果发布了新的文献求助20
26秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4264986
求助须知:如何正确求助?哪些是违规求助? 3797606
关于积分的说明 11904530
捐赠科研通 3443838
什么是DOI,文献DOI怎么找? 1889633
邀请新用户注册赠送积分活动 940537
科研通“疑难数据库(出版商)”最低求助积分说明 844992