A framework for using event evolutionary graphs to rapidly assess the vulnerability of urban flood cascade compound disaster event networks

大洪水 脆弱性(计算) 事件(粒子物理) 自然灾害 计算机科学 脆弱性评估 应急管理 社会脆弱性 构造(python库) 特大城市 环境资源管理 地理 计算机安全 环境科学 生态学 气象学 心理学 物理 考古 量子力学 心理弹性 心理治疗师 政治学 法学 生物 程序设计语言
作者
Yilin Chen,Lidan Zhang,Xiaohong Chen
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:642: 131783-131783 被引量:2
标识
DOI:10.1016/j.jhydrol.2024.131783
摘要

Increasingly frequent flood disasters have caused great losses in recent years. Urban floods induce not only natural geological disasters but also social accidents. These disaster events, called urban flood cascade compound disaster events (UFCCDEs) in this study, have significant cascade, superposition, and amplification effects. However, conventional data sources and processing methods make it difficult to analyze the detailed course of disaster events caused by urban floods, thereby hindering the vulnerability assessment of UFCCDE networks (UFCCDENs). Herein, we propose a framework considering the interactions between disaster events caused by urban floods for rapidly and comprehensively assessing the vulnerability of the UFCCDEN. First, social media data (Sina Weibo) are processed to analyze the spatio-temporal distribution of UFCCDEs and construct a UFCCDEN based on an event evolutionary graph. Second, complex network theory is applied to evaluate the importance of disaster events and the vulnerability of disaster causal chains in the constructed UFCCDEN. Finally, the global efficiency of the network is calculated to assess the propagation efficiency of the UFCCDEN before and after implementing disaster mitigation strategies based on the assessment results to demonstrate the performance of the assessment framework. The coastal megacity Guangzhou was selected as an example. The results showed that, social media data can provide detailed and valid information about UFCCDEs, which can be used to construct the UFCCDEN based on the event evolutionary graph. Waterlogging is found to be the most important disaster event in the UFCCDEN. Furthermore, power facilities, drainage facilities, and roads should be given top priority in the prevention and mitigation of urban floods because of their significant cascading amplification effects. The proposed framework can make the propagation efficiency of the UFCCDEN markedly decrease by 37–62% and 44%, based on the assessment results of disaster events and causal chains, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鳗鱼灵寒完成签到 ,获得积分10
刚刚
1秒前
梦易生完成签到,获得积分10
1秒前
1秒前
1秒前
干净又夏完成签到,获得积分10
1秒前
酷炫含雁完成签到,获得积分10
2秒前
上官若男应助核桃采纳,获得10
2秒前
Orange应助核桃采纳,获得10
2秒前
跳跃的血茗完成签到 ,获得积分10
3秒前
Guinerve完成签到,获得积分10
4秒前
iamleopeng发布了新的文献求助10
4秒前
4秒前
Winks完成签到,获得积分10
4秒前
凌晨洋发布了新的文献求助10
4秒前
4秒前
开心烨磊发布了新的文献求助10
5秒前
在水一方应助壮观以松采纳,获得10
5秒前
二十发布了新的文献求助10
5秒前
6秒前
hh发布了新的文献求助30
6秒前
FashionBoy应助JayChou采纳,获得10
7秒前
fhehe发布了新的文献求助10
7秒前
7秒前
JamesPei应助一别如斯采纳,获得10
8秒前
Valiant发布了新的文献求助10
8秒前
8秒前
2877321934完成签到,获得积分10
8秒前
漂亮飞凤发布了新的文献求助10
9秒前
xcf完成签到,获得积分20
9秒前
10秒前
10秒前
10秒前
坦率晓霜完成签到,获得积分10
11秒前
11秒前
11秒前
chenyu完成签到,获得积分10
11秒前
lwy599完成签到,获得积分10
11秒前
12秒前
12秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
茶叶生物化学 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828671
求助须知:如何正确求助?哪些是违规求助? 3371146
关于积分的说明 10466478
捐赠科研通 3090977
什么是DOI,文献DOI怎么找? 1700623
邀请新用户注册赠送积分活动 817954
科研通“疑难数据库(出版商)”最低求助积分说明 770618