SWSEL: Sliding Window-based Selective Ensemble Learning for class-imbalance problems

计算机科学 欠采样 滑动窗口协议 分类器(UML) 预处理器 窗口(计算) 集成学习 过采样 人工智能 支持向量机 机器学习 模式识别(心理学) 数据挖掘 计算机网络 操作系统 带宽(计算)
作者
Qi Dai,Jian‐wei Liu,Jiapeng Yang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:121: 105959-105959 被引量:11
标识
DOI:10.1016/j.engappai.2023.105959
摘要

For class-imbalance problems, traditional supervised learning algorithms tend to favor majority instances (also called negative instances). Therefore, it is difficult for them to accurately identify the minority instances (also called positive instances). Ensemble learning is a common method to solve the class-imbalance problem. They build multiple classifier systems on the training dataset to improve the recognition accuracy of minority instances. Sliding window is a commonly used method for processing data stream. Few researchers have used sliding windows to select majority instances and construct ensemble learning models. Traditional ensemble learning methods use some or all of the majority instances for modeling by oversampling or undersampling. However, they also inherit the drawbacks of the preprocessing methods. Therefore, in this paper, we try to use similarity mapping to construct pseudo-sequences of majority instances. Then, according to the sliding window idea, we fully use all existing majority instances, and a novel sliding window-based selective ensemble learning method (SWSEL) is proposed to deal with the class-imbalance problem. This method uses the idea of distance alignment in multi-view alignment to align the centers of the minority instances with the majority instances, and slide to select the majority instances on the sequence of pseudo-majority instances. In addition, to prevent too many classifiers from leading to long running times, we use distance metric to select a certain number of base classifiers to build the final ensemble learning model. Extensive experimental results on various real-world datasets show that using SVM, MLP and RF as the base classifier, SWSEL achieves a statistically significant performance improvement on two evaluation metrics, AUC and G-mean, compared to state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
芋泥好暖椰y完成签到,获得积分10
1秒前
LIUDEHUA完成签到,获得积分10
2秒前
杰_骜不驯完成签到,获得积分10
2秒前
2秒前
so完成签到,获得积分10
2秒前
张一发布了新的文献求助10
2秒前
田様应助霸王花采纳,获得10
3秒前
科研通AI5应助小牟同学采纳,获得10
3秒前
姜水完成签到,获得积分10
3秒前
3秒前
MG_XSJ发布了新的文献求助10
4秒前
1134发布了新的文献求助10
4秒前
3080发布了新的文献求助10
5秒前
阿九发布了新的文献求助10
5秒前
7秒前
7秒前
小林子发布了新的文献求助10
7秒前
7秒前
lindoudou完成签到,获得积分10
8秒前
9秒前
9秒前
蛇從革给Fearless的求助进行了留言
9秒前
10秒前
10秒前
风吹草动玉米粒完成签到,获得积分10
10秒前
丫头完成签到,获得积分10
10秒前
10秒前
桂花乌龙发布了新的文献求助10
11秒前
ayra完成签到,获得积分10
12秒前
星星发布了新的文献求助10
12秒前
12秒前
MG_XSJ完成签到,获得积分10
12秒前
Lucas应助任斯采纳,获得30
13秒前
wind发布了新的文献求助10
13秒前
AA完成签到,获得积分10
14秒前
大气成风发布了新的文献求助10
14秒前
无情科研狗完成签到,获得积分10
14秒前
read发布了新的文献求助10
15秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 740
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
Corpus Linguistics for Language Learning Research 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4139320
求助须知:如何正确求助?哪些是违规求助? 3676275
关于积分的说明 11620352
捐赠科研通 3370382
什么是DOI,文献DOI怎么找? 1851340
邀请新用户注册赠送积分活动 914489
科研通“疑难数据库(出版商)”最低求助积分说明 829266