热化学循环
氧化还原
钙钛矿(结构)
X射线光电子能谱
化学
制氢
焓
热力学
分解水
氢
材料科学
化学物理
化学工程
无机化学
催化作用
结晶学
生物化学
光催化
物理
工程类
有机化学
作者
Dawei Zhang,Héctor A. De Santiago,Boyuan Xu,Cijie Liu,Jamie A. Trindell,Wei Li,Jiyun Park,Mark A. Rodriguez,Eric N. Coker,Joshua D. Sugar,Anthony H. McDaniel,Stephan Lany,Liang Ma,Yi Wang,Gregory Collins,Hanchen Tian,Wenyuan Li,Yue Qi,Xingbo Liu,Jian Luo
标识
DOI:10.1021/acs.chemmater.2c03054
摘要
Solar thermochemical hydrogen (STCH) generation is a promising approach for eco-friendly H<sub>2</sub> production, but conventional STCH redox compounds cannot easily achieve desirable thermodynamic and kinetic properties and phase stability simultaneously due to a rather limited compositional space. Expanding from the nascent high-entropy ceramics field, this study explores a new class of compositionally complex perovskite oxides (La<sub>0.8</sub>Sr<sub>0.2</sub>)(Mn<sub>(1–x)/3</sub>Fe<sub>(1–x)/3</sub>Co<sub>x</sub>Al<sub>(1–x)/3</sub>)O<sub>3</sub> with new non-equimolar designs for STCH. In situ X-ray photoelectron spectroscopy shows preferential redox of Co. The extent of reduction increases, but the intrinsic kinetics decreases, with increasing Co content. Consequently, (La<sub>0.8</sub>Sr<sub>0.2</sub>)(Mn<sub>0.2</sub>Fe<sub>0.2</sub>Co<sub>0.4</sub>Al<sub>0.2</sub>)O<sub>3</sub> achieves an optimal thermodynamic and kinetic balance. The combination of a moderate enthalpy of reduction, a high entropy of reduction, and preferable surface oxygen exchange kinetics enables a maximum H<sub>2</sub> production of 89.97 mmol mol<sub>oxide</sub><sup>–1</sup> in a short 1 h redox duration. Entropy stabilization may contribute to the phase stability during redox cycling without phase transformation, which enables STCH production for >50 cycles under harsh interrupted conditions. The underlying redox mechanism is further elucidated by a density functional theory-based parallel Monte Carlo computation approach. This study suggests a new class of non-equimolar compositionally complex ceramics for STCH and thermochemical looping.
科研通智能强力驱动
Strongly Powered by AbleSci AI