How well can an AI chatbot infer personality? Examining psychometric properties of machine-inferred personality scores.

心理学 判别效度 人格 概化理论 收敛有效性 面(心理学) 增量有效性 人格评估量表 心理测量学 标准效度 五大性格特征 结构效度 人工智能 临床心理学 发展心理学 社会心理学 内部一致性 计算机科学
作者
Jinyan Fan,Tianjun Sun,Jiayi Liu,Teng Zhao,Bo Zhang,Zheng Chen,Melissa Glorioso,Elissa Hack
出处
期刊:Journal of Applied Psychology [American Psychological Association]
卷期号:108 (8): 1277-1299 被引量:31
标识
DOI:10.1037/apl0001082
摘要

The present study explores the plausibility of measuring personality indirectly through an artificial intelligence (AI) chatbot. This chatbot mines various textual features from users' free text responses collected during an online conversation/interview and then uses machine learning algorithms to infer personality scores. We comprehensively examine the psychometric properties of the machine-inferred personality scores, including reliability (internal consistency, split-half, and test-retest), factorial validity, convergent and discriminant validity, and criterion-related validity. Participants were undergraduate students (n = 1,444) enrolled in a large southeastern public university in the United States who completed a self-report Big Five personality measure (IPIP-300) and engaged with an AI chatbot for approximately 20-30 min. In a subsample (n = 407), we obtained participants' cumulative grade point averages from the University Registrar and had their peers rate their college adjustment. In an additional sample (n = 61), we obtained test-retest data. Results indicated that machine-inferred personality scores (a) had overall acceptable reliability at both the domain and facet levels, (b) yielded a comparable factor structure to self-reported questionnaire-derived personality scores, (c) displayed good convergent validity but relatively poor discriminant validity (averaged convergent correlations = .48 vs. averaged machine-score correlations = .35 in the test sample), (d) showed low criterion-related validity, and (e) exhibited incremental validity over self-reported questionnaire-derived personality scores in some analyses. In addition, there was strong evidence for cross-sample generalizability of psychometric properties of machine scores. Theoretical implications, future research directions, and practical considerations are discussed. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
归尘发布了新的文献求助10
1秒前
西门冥幽完成签到,获得积分10
3秒前
冷静如柏完成签到,获得积分10
3秒前
4秒前
SYX完成签到 ,获得积分10
7秒前
元宵宵完成签到,获得积分10
8秒前
9秒前
半柚发布了新的文献求助10
9秒前
微笑的井完成签到 ,获得积分10
9秒前
aqaqaqa完成签到,获得积分10
9秒前
广州南完成签到 ,获得积分10
9秒前
小四喜发布了新的文献求助10
14秒前
北风应助阳光的梦寒采纳,获得10
14秒前
14秒前
半柚完成签到,获得积分10
16秒前
狮子卷卷完成签到,获得积分10
19秒前
直率沂发布了新的文献求助30
19秒前
张铁柱完成签到,获得积分10
21秒前
Hou完成签到 ,获得积分10
31秒前
科研通AI5应助杨惊蛰采纳,获得10
33秒前
33秒前
pluto应助威武涵梅采纳,获得20
34秒前
36秒前
breezes发布了新的文献求助10
41秒前
酷波er应助yui采纳,获得10
44秒前
领导范儿应助磊大彪采纳,获得10
45秒前
七慕凉完成签到,获得积分10
47秒前
flowey完成签到,获得积分10
52秒前
Jasper应助科研通管家采纳,获得10
52秒前
Ava应助科研通管家采纳,获得10
52秒前
充电宝应助科研通管家采纳,获得10
52秒前
52秒前
52秒前
52秒前
戴衡霞完成签到,获得积分10
53秒前
可爱的函函应助doubles采纳,获得30
54秒前
作文27分完成签到,获得积分10
55秒前
57秒前
58秒前
58秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781324
求助须知:如何正确求助?哪些是违规求助? 3326844
关于积分的说明 10228534
捐赠科研通 3041858
什么是DOI,文献DOI怎么找? 1669603
邀请新用户注册赠送积分活动 799153
科研通“疑难数据库(出版商)”最低求助积分说明 758751