Hierarchical graph neural network with adaptive cross-graph fusion for remaining useful life prediction

计算机科学 图形 传感器融合 人工神经网络 杠杆(统计) 模块化设计 数据挖掘 理论计算机科学 人工智能 操作系统
作者
Gang Wang,Yanan Zhang,Ming-Feng Lu,Zhangjun Wu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (5): 055112-055112 被引量:8
标识
DOI:10.1088/1361-6501/acb83e
摘要

Abstract Multi-sensor monitoring data provide abundant information resources for complex machine systems, which facilitates monitoring the degradation process of machinery and ensuring the reliability of the industrial process. However, previous prognostic methods focus more on the sequential data obtained from multi-sensors, while ignoring the underlying prior structural information of the equipment. To fully leverage the structural information into the modeling process, and thus improve the remaining useful life (RUL) prediction performance, a hierarchical graph neural network with adaptive cross-graph fusion (HGNN-ACGF) method for RUL prediction is proposed in this study. In the HGNN-ACGF method, a hierarchical graph consisting of a sensor graph and a module graph is constructed by introducing the structural information to fully model the degradation trend information of the complex machine system. Besides, the graph neural network (GNN) is adopted to learn the representation at both the module graph and sensor graph, and an adaptive cross-graph fusion (ACGF) block is proposed. Owing to the cross-graph fusion block, the representation from different graphs can be fused adaptively by considering the relative importance between different modules and sensors. To verify the proposed method, the experiments were conducted on a set of degradation data sets of aircraft engines provided by the Commercial Modular Aero-Propulsion System Simulation. The experimental results show that the proposed method has superior performance in RUL prediction over the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Joyi完成签到 ,获得积分20
刚刚
Lucas应助ddli采纳,获得10
刚刚
科研通AI5应助ddli采纳,获得10
刚刚
善学以致用应助ddli采纳,获得10
刚刚
Akim应助ddli采纳,获得10
刚刚
科研通AI5应助ddli采纳,获得10
刚刚
科研通AI5应助ddli采纳,获得10
刚刚
Hello应助ddli采纳,获得10
刚刚
科目三应助ddli采纳,获得10
刚刚
Hello应助ddli采纳,获得10
1秒前
1秒前
bkagyin应助ddli采纳,获得10
1秒前
Bin_Liu发布了新的文献求助10
2秒前
萱萱发布了新的文献求助10
2秒前
2秒前
2秒前
阿苇完成签到 ,获得积分10
4秒前
4秒前
5秒前
5秒前
xxxinging发布了新的文献求助10
6秒前
科研通AI5应助微笑的映波采纳,获得10
6秒前
8秒前
Chem34完成签到,获得积分10
8秒前
研友_ndvWy8发布了新的文献求助10
10秒前
aaaaarfv发布了新的文献求助10
11秒前
11秒前
桑尼号完成签到,获得积分10
11秒前
斯文败类应助Lwssss采纳,获得10
11秒前
11秒前
biubiuu完成签到,获得积分10
12秒前
瞳梦完成签到,获得积分10
15秒前
moyu发布了新的文献求助10
16秒前
小石完成签到,获得积分10
17秒前
研友_Lw7OvL发布了新的文献求助30
18秒前
19秒前
miao完成签到,获得积分10
21秒前
小白鼠完成签到 ,获得积分10
21秒前
科目三应助聂裕铭采纳,获得10
21秒前
22秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801265
求助须知:如何正确求助?哪些是违规求助? 3346952
关于积分的说明 10331093
捐赠科研通 3063252
什么是DOI,文献DOI怎么找? 1681462
邀请新用户注册赠送积分活动 807600
科研通“疑难数据库(出版商)”最低求助积分说明 763785