Hierarchical graph neural network with adaptive cross-graph fusion for remaining useful life prediction

计算机科学 图形 传感器融合 人工神经网络 杠杆(统计) 模块化设计 数据挖掘 理论计算机科学 人工智能 操作系统
作者
Gang Wang,Yanan Zhang,Ming-Feng Lu,Zhangjun Wu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (5): 055112-055112 被引量:8
标识
DOI:10.1088/1361-6501/acb83e
摘要

Abstract Multi-sensor monitoring data provide abundant information resources for complex machine systems, which facilitates monitoring the degradation process of machinery and ensuring the reliability of the industrial process. However, previous prognostic methods focus more on the sequential data obtained from multi-sensors, while ignoring the underlying prior structural information of the equipment. To fully leverage the structural information into the modeling process, and thus improve the remaining useful life (RUL) prediction performance, a hierarchical graph neural network with adaptive cross-graph fusion (HGNN-ACGF) method for RUL prediction is proposed in this study. In the HGNN-ACGF method, a hierarchical graph consisting of a sensor graph and a module graph is constructed by introducing the structural information to fully model the degradation trend information of the complex machine system. Besides, the graph neural network (GNN) is adopted to learn the representation at both the module graph and sensor graph, and an adaptive cross-graph fusion (ACGF) block is proposed. Owing to the cross-graph fusion block, the representation from different graphs can be fused adaptively by considering the relative importance between different modules and sensors. To verify the proposed method, the experiments were conducted on a set of degradation data sets of aircraft engines provided by the Commercial Modular Aero-Propulsion System Simulation. The experimental results show that the proposed method has superior performance in RUL prediction over the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SR发布了新的文献求助10
刚刚
刚刚
孤独的迎滑完成签到,获得积分10
刚刚
丘比特应助PPP采纳,获得30
1秒前
lalala应助郭科研采纳,获得10
1秒前
2秒前
汉堡包应助鲤鱼越越采纳,获得10
2秒前
漾漾发布了新的文献求助10
2秒前
lalala应助小兵采纳,获得10
3秒前
wangjie发布了新的文献求助10
4秒前
小席发布了新的文献求助10
4秒前
追寻皮卡丘完成签到 ,获得积分10
4秒前
5秒前
5秒前
等待的秋双完成签到,获得积分10
5秒前
JamesPei应助等待的谷波采纳,获得10
5秒前
李健的小迷弟应助XXX采纳,获得30
7秒前
烟花应助矜持采纳,获得10
7秒前
蛋蛋发布了新的文献求助200
7秒前
8秒前
努力发布了新的文献求助10
8秒前
9秒前
9秒前
zzz完成签到,获得积分10
9秒前
端庄秋双发布了新的文献求助10
10秒前
mp5完成签到,获得积分10
10秒前
10秒前
NexusExplorer应助7分运气采纳,获得10
11秒前
11秒前
拉风的鸡子鱼完成签到,获得积分20
12秒前
12秒前
13秒前
FashionBoy应助风中的眼神采纳,获得10
13秒前
13秒前
xiaofengche发布了新的文献求助10
14秒前
情怀应助碧蓝向雁采纳,获得10
14秒前
Vicky发布了新的文献求助10
14秒前
马克完成签到,获得积分10
15秒前
15秒前
完美世界应助ZhuoCui采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297937
求助须知:如何正确求助?哪些是违规求助? 4446651
关于积分的说明 13840081
捐赠科研通 4331772
什么是DOI,文献DOI怎么找? 2377938
邀请新用户注册赠送积分活动 1373193
关于科研通互助平台的介绍 1338770