Improved Field-Based Soybean Seed Counting and Localization with Feature Level Considered

模式识别(心理学) 人工智能 合并(版本控制) 计算机科学 聚类分析 数学 情报检索
作者
Jiangsan Zhao,Akito Kaga,Tetsuya Yamada,Kunihiko Komatsu,Kaori Hirata,Akio Kikuchi,Masayuki Hirafuji,S. Ninomiya,Wei Guo
出处
期刊:Plant phenomics [American Association for the Advancement of Science]
卷期号:5 被引量:33
标识
DOI:10.34133/plantphenomics.0026
摘要

Developing automated soybean seed counting tools will help automate yield prediction before harvesting and improving selection efficiency in breeding programs. An integrated approach for counting and localization is ideal for subsequent analysis. The traditional method of object counting is labor-intensive and error-prone and has low localization accuracy. To quantify soybean seed directly rather than sequentially, we propose a P2PNet-Soy method. Several strategies were considered to adjust the architecture and subsequent postprocessing to maximize model performance in seed counting and localization. First, unsupervised clustering was applied to merge closely located overcounts. Second, low-level features were included with high-level features to provide more information. Third, atrous convolution with different kernel sizes was applied to low- and high-level features to extract scale-invariant features to factor in soybean size variation. Fourth, channel and spatial attention effectively separated the foreground and background for easier soybean seed counting and localization. At last, the input image was added to these extracted features to improve model performance. Using 24 soybean accessions as experimental materials, we trained the model on field images of individual soybean plants obtained from one side and tested them on images obtained from the opposite side, with all the above strategies. The superiority of the proposed P2PNet-Soy in soybean seed counting and localization over the original P2PNet was confirmed by a reduction in the value of the mean absolute error, from 105.55 to 12.94. Furthermore, the trained model worked effectively on images obtained directly from the field without background interference.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
2秒前
4秒前
熙慕完成签到,获得积分10
4秒前
Dobronx03完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
ping完成签到,获得积分10
5秒前
5秒前
5秒前
lyq发布了新的文献求助10
6秒前
幸福大白发布了新的文献求助10
6秒前
6秒前
Rainor发布了新的文献求助10
6秒前
熙慕发布了新的文献求助10
7秒前
ccyy完成签到,获得积分20
7秒前
7秒前
9秒前
缓慢翠芙完成签到,获得积分20
9秒前
sxr完成签到,获得积分10
9秒前
9秒前
科研通AI2S应助资格丘二采纳,获得10
10秒前
Zjc0913发布了新的文献求助10
11秒前
11秒前
浅浪发布了新的文献求助10
12秒前
12秒前
13秒前
jskd发布了新的文献求助10
13秒前
13秒前
14秒前
麦客发布了新的文献求助10
15秒前
15秒前
wddfz完成签到,获得积分10
17秒前
生动之桃发布了新的文献求助10
18秒前
xxxxxxh完成签到,获得积分10
18秒前
诚心的若南完成签到,获得积分10
19秒前
科研通AI6应助牛肉汉堡采纳,获得10
19秒前
豆豆完成签到 ,获得积分10
19秒前
科研通AI6应助lyq采纳,获得10
20秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4215307
求助须知:如何正确求助?哪些是违规求助? 3749656
关于积分的说明 11794701
捐赠科研通 3415646
什么是DOI,文献DOI怎么找? 1874466
邀请新用户注册赠送积分活动 928547
科研通“疑难数据库(出版商)”最低求助积分说明 837695