范畴变量
潜变量
潜在类模型
潜变量模型
潜在增长模型
概率潜在语义分析
结构方程建模
计算机科学
变量(数学)
计量经济学
数学
人工智能
机器学习
数学分析
出处
期刊:Psychology Press eBooks
[Psychology Press]
日期:2001-03-01
卷期号:: 21-54
被引量:500
标识
DOI:10.4324/9781410601858-6
摘要
This chapter discusses models with latent variables that are continuous and/ or categorical. It also gives an overview of modeling issues related to crosssectional analysis using latent class models, modeling of longitudinal data using latent class models, and modeling of longitudinal data using a combination of continuous and categorical latent variables (growth mixture models). A series of examples are presented. The analyses are carried out within a general latent variable modeling f\work shown in the appendix using the Mplus program (Muthén & Muthén, 1998). Mplus input specifications for these analyses can be obtained from www.statmodel.com. To introduce the analyses, a brief overview of modeling ideas is presented in Figs. 1.1 to 1.3.
科研通智能强力驱动
Strongly Powered by AbleSci AI