Network science and the human brain: Using graph theory to understand the brain and one of its hubs, the amygdala, in health and disease

神经科学 扁桃形结构 脑磁图 心理学 连接组学 功能磁共振成像 复杂网络 模块化(生物学) 磁共振弥散成像 图论 连接体 计算机科学 认知科学 脑电图 功能连接 医学 生物 磁共振成像 万维网 放射科 组合数学 遗传学 数学
作者
David Mears,Harvey B. Pollard
出处
期刊:Journal of Neuroscience Research [Wiley]
卷期号:94 (6): 590-605 被引量:113
标识
DOI:10.1002/jnr.23705
摘要

Over the past 15 years, the emerging field of network science has revealed the key features of brain networks, which include small‐world topology, the presence of highly connected hubs, and hierarchical modularity. The value of network studies of the brain is underscored by the range of network alterations that have been identified in neurological and psychiatric disorders, including epilepsy, depression, Alzheimer's disease, schizophrenia, and many others. Here we briefly summarize the concepts of graph theory that are used to quantify network properties and describe common experimental approaches for analysis of brain networks of structural and functional connectivity. These range from tract tracing to functional magnetic resonance imaging, diffusion tensor imaging, electroencephalography, and magnetoencephalography. We then summarize the major findings from the application of graph theory to nervous systems ranging from Caenorhabditis elegans to more complex primate brains, including man. Focusing, then, on studies involving the amygdala, a brain region that has attracted intense interest as a center for emotional processing, fear, and motivation, we discuss the features of the amygdala in brain networks for fear conditioning and emotional perception. Finally, to highlight the utility of graph theory for studying dysfunction of the amygdala in mental illness, we review data with regard to changes in the hub properties of the amygdala in brain networks of patients with depression. We suggest that network studies of the human brain may serve to focus attention on regions and connections that act as principal drivers and controllers of brain function in health and disease. † Published 2016
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助mysw2006zhuo采纳,获得10
刚刚
jasmine完成签到,获得积分10
刚刚
啦啦啦啦完成签到,获得积分10
刚刚
刚刚
刚刚
CodeCraft应助罗勍采纳,获得10
1秒前
王诗琪应助文安采纳,获得10
1秒前
飞跃发布了新的文献求助10
1秒前
yangyan发布了新的文献求助10
1秒前
lf发布了新的文献求助10
1秒前
酷波er应助lqqqq采纳,获得10
2秒前
和花花完成签到,获得积分10
2秒前
2秒前
3秒前
Maps发布了新的文献求助10
3秒前
3秒前
orixero应助hhppt采纳,获得30
3秒前
圈圈完成签到,获得积分10
3秒前
hui发布了新的文献求助10
3秒前
3秒前
JINITAIMEI发布了新的文献求助10
4秒前
稳重芷巧完成签到,获得积分20
4秒前
Owen应助852采纳,获得10
4秒前
童0731完成签到,获得积分10
4秒前
胖头鱼566完成签到,获得积分10
4秒前
5秒前
5秒前
阔达尔白发布了新的文献求助10
5秒前
Cherish完成签到,获得积分10
5秒前
笑笑完成签到,获得积分10
5秒前
peace发布了新的文献求助10
5秒前
友好的又亦完成签到,获得积分20
6秒前
Orange应助文安采纳,获得10
6秒前
香蕉觅云应助雷仔采纳,获得10
6秒前
7秒前
7秒前
SciGPT应助Ccc采纳,获得10
7秒前
7秒前
7秒前
研友_LJGpan完成签到,获得积分10
7秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5446700
求助须知:如何正确求助?哪些是违规求助? 4555753
关于积分的说明 14253433
捐赠科研通 4478188
什么是DOI,文献DOI怎么找? 2453545
邀请新用户注册赠送积分活动 1444357
关于科研通互助平台的介绍 1420399