A Novel Strategy for Large-Scale Metabolomics Study by Calibrating Gross and Systematic Errors in Gas Chromatography–Mass Spectrometry

代谢组学 校准 离群值 化学 欧几里德距离 数据挖掘 统计 计算机科学 色谱法 人工智能 数学
作者
Yanni Zhao,Zhiqiang Hao,Chunxia Zhao,Jieyu Zhao,Junjie Zhang,Yanli Li,Lili Li,Xin Huang,Xiaohui Lin,Zhongda Zeng,Xin Lu,Guowang Xu
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:88 (4): 2234-2242 被引量:30
标识
DOI:10.1021/acs.analchem.5b03912
摘要

Metabolomics is increasingly applied to discover and validate metabolite biomarkers and illuminate biological variations. Combination of multiple analytical batches in large-scale and long-term metabolomics is commonly utilized to generate robust metabolomics data, but gross and systematic errors are often observed. The appropriate calibration methods are required before statistical analyses. Here, we develop a novel correction strategy for large-scale and long-term metabolomics study, which could integrate metabolomics data from multiple batches and different instruments by calibrating gross and systematic errors. The gross error calibration method applied various statistical and fitting models of the feature ratios between two adjacent quality control (QC) samples to screen and calibrate outlier variables. Virtual QC of each sample was produced by a linear fitting model of the feature intensities between two neighboring QCs to obtain a correction factor and remove the systematic bias. The suggested method was applied to handle metabolic profiling data of 1197 plant samples in nine batches analyzed by two gas chromatography-mass spectrometry instruments. The method was evaluated by the relative standard deviations of all the detected peaks, the average Pearson correlation coefficients, and Euclidean distance of QCs and non-QC replicates. The results showed the established approach outperforms the commonly used internal standard correction and total intensity signal correction methods, it could be used to integrate the metabolomics data from multiple analytical batches and instruments, and it allows the frequency of QC to one injection of every 20 real samples. The suggested method makes a large amount of metabolomics analysis practicable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lhaoran完成签到,获得积分10
刚刚
KaleighCarlos应助zhouleiwang采纳,获得30
刚刚
刚刚
量子星尘发布了新的文献求助10
刚刚
汉堡包应助孙欣阳采纳,获得20
1秒前
大树完成签到 ,获得积分10
1秒前
树洞里的刺猬完成签到,获得积分10
2秒前
2秒前
2秒前
mmmm完成签到,获得积分10
3秒前
Yidie发布了新的文献求助10
3秒前
3秒前
阿边完成签到 ,获得积分10
3秒前
Orange应助shenyanlei采纳,获得10
3秒前
蔡雯完成签到,获得积分10
3秒前
淡淡茉莉发布了新的文献求助10
4秒前
Zhouzhou完成签到,获得积分10
4秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
钦林发布了新的文献求助10
6秒前
Nedel完成签到,获得积分20
7秒前
viettu7d完成签到,获得积分10
8秒前
善学以致用应助美好斓采纳,获得10
8秒前
zhengshanbei发布了新的文献求助10
8秒前
幸运星发布了新的文献求助10
8秒前
wbsj发布了新的文献求助10
9秒前
3080发布了新的文献求助30
9秒前
大气的煎饼完成签到 ,获得积分10
9秒前
halide完成签到,获得积分10
9秒前
9秒前
liman完成签到,获得积分20
10秒前
田様应助等等采纳,获得10
10秒前
10秒前
NexusExplorer应助没心情A采纳,获得10
10秒前
remix发布了新的文献求助10
11秒前
yznfly应助ha采纳,获得100
11秒前
11秒前
个性无剑发布了新的文献求助10
11秒前
飘逸的狗完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713133
求助须知:如何正确求助?哪些是违规求助? 5213704
关于积分的说明 15269646
捐赠科研通 4864955
什么是DOI,文献DOI怎么找? 2611759
邀请新用户注册赠送积分活动 1562014
关于科研通互助平台的介绍 1519213