压电
陶瓷
材料科学
微晶
锆钛酸铅
复合材料
铁电性
凝聚态物理
极化(电化学)
相变
挠曲电
矿物学
晶体缺陷
格子(音乐)
铁电陶瓷
电阻抗
钛酸酯
烧结
奇点
晶体结构
粒度
钛酸锶
钛酸铋
钛酸钡
作者
Yanshuang Hao,Dipak Kumar Khatua,D. Wang,Jinghui Gao,Shuai Ren,Yu Yang,Minxia Fang,Dezhen Xue,Jingze Xu,G. H. Wang,Xiaoqin Ke,Zhizhi Xu,Changli Liu,Qichao Fan,Yuanchao Ji,Le Zhang,Sen Yang,G. H. Wang,Xiaobing Ren
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2026-01-29
标识
DOI:10.1126/science.aec5660
摘要
Transformative technologies demand polycrystalline piezoelectric ceramics with piezoelectric coefficients ( d 33 ) exceeding 6000 picocoulomb per Newton (pC/N), but this goal has remained elusive because of the intrinsically weak nature of piezoelectricity and incomplete polarization alignment in polycrystals. We overcome this barrier by placing a polycrystalline lead zirconate titanate (PZT) ceramic in a temperature and electric-field control module so that it operates at a quadruple phase point (QP). This QP ceramic exhibited a d 33 of ~6850 pC/N, which surpasses commercial PZT ceramics by 10 to 30 times and commercial lead magnesium niobate-lead titanate single crystal by ~4 times. This exceptional property arises from the tricritical nature of the QP, a thermodynamic singularity that produces an ultrasoft lattice and enables complete polarization alignment in polycrystals. The module maintained this performance for surrounding ambient temperature ranging from 25° to 350°C.
科研通智能强力驱动
Strongly Powered by AbleSci AI