柯肯德尔效应
材料科学
析氧
过电位
催化作用
化学工程
过渡金属
应变工程
质子交换膜燃料电池
纳米颗粒
氧气
分解水
电催化剂
同步加速器
金属有机骨架
无机化学
固溶体
双功能
膜
纳米技术
微型多孔材料
纳米棒
X射线吸收光谱法
金属
等温过程
多相催化
作者
Yuxin Tang,Nannan Liang,Yinghui Li,Qingliang Luo,Wei Ding,Boyang Li,Xin Gao,Quanquan Pang,Dongxiao Ji,Mingchuan Luo
标识
DOI:10.1002/aenm.202506692
摘要
ABSTRACT While Kirkendall oxidation (KO) facilely fabricates transition metal oxides for oxygen evolution reaction (OER) in proton exchange membrane water electrolyzers (PEMWEs), it concomitantly triggers detrimental lattice expansion. For Co 3 O 4 , an appealing IrO 2 ‐alternative catalyst, KO generates a free lattice expansion above 2.4%, resulting in suboptimal activity and stability. Here, we design a confined KO approach and coat the precursor Co nanoparticles with atomic carbon layers, enabling controllable lattice expansion of Co 3 O 4 between 0.2% and 1.8%. For the first time, a strain‐dependent OER activity of Co 3 O 4 is established in acidic media, with an expansion strain of 1.4% exhibiting the lowest overpotential of 377 mV at 10 mA cm −2 . Synchrotron X‐ray absorption spectroscopies and theoretical calculations unravel the adjustable lattice strain regulates the d‐band center of Co sites and further modifies the oxygenate adsorptions. When integrated into a PEMWE, the 1.4%‐strained Co 3 O 4 catalyst sustainably operates at 250 mA cm −2 over 100 h. The reported confined KO provides a new means for strain engineering of transition metal oxides for energy electrocatalysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI