Use of mass spectrometry for metabolite profiling and metabolomics

代谢组 代谢组学 代谢物 生物 计算生物学 生物化学 生物信息学
作者
Joel Gummer,M. Banazis,Garth Maker,Peter S. Solomon,Richard P. Oliver,Robert D. Trengove
链接
摘要

The metabolome of a biological system refers to the complement of all low molecular weight (<1,500 daltons) metabolites in that system (Fig. 1). As biological changes in a system are thought to be amplified at the level of the metabolome, metabolites have been coined ‘the canaries of the genome’. Metabolomics refers to the quantitative analysis of the metabolome. Whilst the measurement and quantification of individual or small numbers of metabolites is well established in biochemistry, metabolomics differs from more targeted analyses in the number of classes of metabolites being detected, the range of analytical techniques being employed and the need for advanced signal processing and bioinformatics tools. Different organisms are likely to contain variable numbers of metabolites. For example, well-characterised prokaryotic systems, such as E. coli, are estimated to contain approximately 750 metabolites (1). On the other hand, individual eukaryotic cells may contain between 4,000 and 20,000 metabolites (2), while estimates of all metabolites in the plant and fungal kingdoms, which are characterised by having complex secondary metabolism, range into the hundreds of thousands (3). The number of metabolites in specific cell, tissue and biofluid samples of metazoan organisms may also vary markedly. For example, the Human Metabolome Project (http://www.hmdb.ca/) has identified and quantified 6,826 metabolites in human tissues and biofluids. Of these, 3,970 have been identified in serum, while other biofluids, such as urine and cerebrospinal fluid, contain a comparatively simpler composition (472 and 360 metabolites, respectively) (4). In common with some other ‘-omics’ approaches, metabolomics employs and is highly dependent on diverse analytical approaches (summarised in Fig. 2), including mass spectrometry (MS), nuclear magnetic resonance spectroscopy (NMR) and Fourier Transform infrared spectroscopy. Of these approaches, MS-based techniques have developed most rapidly and are increasingly being deployed in metabolomics analyses (Table 1). This article provides a short overview of MS-based metabolomics and provides a starting point for scientists considering exploiting this rapidly emerging field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助OvO采纳,获得10
刚刚
Akim应助Yuanyuan采纳,获得10
刚刚
量子星尘发布了新的文献求助30
1秒前
小马甲应助鼻揩了转去采纳,获得10
1秒前
glj发布了新的文献求助30
1秒前
情怀应助风-FBDD采纳,获得10
1秒前
2秒前
www发布了新的文献求助10
2秒前
3秒前
活力天蓝发布了新的文献求助10
3秒前
深情安青应助无心的闭月采纳,获得10
4秒前
4秒前
4秒前
5秒前
华雍发布了新的文献求助10
5秒前
淡定的竺发布了新的文献求助30
5秒前
6秒前
xd发布了新的文献求助10
6秒前
华仔应助小章采纳,获得10
6秒前
6秒前
7秒前
爆米花应助马儿咯咯哒采纳,获得10
8秒前
尖叫尖叫发布了新的文献求助20
8秒前
柴郡喵完成签到,获得积分10
9秒前
9秒前
跳跃毒娘发布了新的文献求助10
9秒前
菜小芽完成签到 ,获得积分10
9秒前
华雍完成签到,获得积分10
10秒前
lincool完成签到,获得积分10
10秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
ZR14124发布了新的文献求助10
14秒前
MAKEYF完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助30
14秒前
上官若男应助Yuanyuan采纳,获得10
16秒前
dnn_发布了新的文献求助10
16秒前
自然若完成签到,获得积分10
16秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729568
求助须知:如何正确求助?哪些是违规求助? 5319394
关于积分的说明 15317016
捐赠科研通 4876593
什么是DOI,文献DOI怎么找? 2619440
邀请新用户注册赠送积分活动 1568984
关于科研通互助平台的介绍 1525535