Prediction of Methylation Sites Using the Composition of K-Spaced Amino Acid Pairs

甲基化 赖氨酸 精氨酸 计算生物学 支持向量机 生物 氨基酸 生物化学 化学 计算机科学 基因 生物信息学 DNA甲基化 基因表达 人工智能
作者
Wenyi Zhang,Xin Xu,Minghao Yin,Na Luo,Jingbo Zhang,Jianan Wang
出处
期刊:Protein and Peptide Letters [Bentham Science Publishers]
卷期号:20 (8): 911-917 被引量:20
标识
DOI:10.2174/0929866511320080008
摘要

Protein methylation is one of the most important post-translational modifications. Typically methylation occurs on arginine or lysine residues in the protein sequence. In the biological system, methylation is catalyzed by enzymes, and should be involved in modification of heavy metals, regulation of gene expression, regulation of protein function, and RNA metabolism. Thus the prediction of methylation sites plays a crucial role. As we know, traditional experiment approaches to predict the sites are accurate, but that are always labor-intensive and time-consuming. Thus, it is common to see that computational methods receive increasingly attentions due to their convenience and fast speed in recent years. In this study, we develop a computational approach to predict the performance of methylarginine and methyllysine sites. First, a new encoding schema as called the CKASSP is used in our method. Then, the support vector machine (SVM) algorithm is used as a predictor. Experimental results show that our method can obtain average prediction accuracy of 87.46%, sensitivity of 99.09%, specificity of 86.89% for arginine methylation sites, and average prediction accuracy of 88.78%, sensitivity of 93.75%, specificity of 81.79% for lysine methylation sites as well, which is better than those of other state-of-art predictors. The online service is implemented by java 1.4.2 and is freely available at http://202.198.129.219:8080/cksaap_methsite.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
郭梓韵发布了新的文献求助10
刚刚
swg发布了新的文献求助10
刚刚
传奇3应助Quinta采纳,获得10
1秒前
西西完成签到,获得积分10
1秒前
3秒前
懒癌晚期完成签到,获得积分10
4秒前
6秒前
勤劳的雨文完成签到,获得积分10
7秒前
博修发布了新的文献求助30
8秒前
嘻嘻嘻完成签到 ,获得积分10
9秒前
9秒前
段玉杰发布了新的文献求助10
10秒前
我是老大应助瑞曦采纳,获得10
13秒前
桃子完成签到,获得积分20
14秒前
啊啊啊发布了新的文献求助10
14秒前
16秒前
保持理智完成签到,获得积分10
17秒前
小蘑菇应助博修采纳,获得30
17秒前
18秒前
Quinta完成签到,获得积分10
19秒前
星海发布了新的文献求助10
19秒前
Ryjinisfine完成签到,获得积分10
20秒前
zhaozijin123完成签到,获得积分10
21秒前
halo完成签到,获得积分10
21秒前
Zyq发布了新的文献求助10
21秒前
尔尔完成签到,获得积分10
22秒前
Quinta发布了新的文献求助10
23秒前
yaoxc完成签到,获得积分10
23秒前
在水一方应助yaoxc采纳,获得10
26秒前
Owen应助Zyq采纳,获得10
28秒前
青槿完成签到,获得积分10
29秒前
禾页完成签到 ,获得积分10
29秒前
懦弱的祥完成签到 ,获得积分10
32秒前
郭梓韵完成签到,获得积分10
32秒前
33秒前
34秒前
zjzjzjzjzj完成签到 ,获得积分10
35秒前
田様应助有一套采纳,获得10
36秒前
37秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799078
求助须知:如何正确求助?哪些是违规求助? 3344805
关于积分的说明 10321507
捐赠科研通 3061233
什么是DOI,文献DOI怎么找? 1680100
邀请新用户注册赠送积分活动 806899
科研通“疑难数据库(出版商)”最低求助积分说明 763445