模式锁定
光学
光纤激光器
激光器
调幅
材料科学
物理
频率调制
电信
计算机科学
带宽(计算)
作者
P. Das,Walter Kaechele,James P. Theimer,Andrew R. Pirich
摘要
Optical pulse sources with repetition rate approaching terahertz are very important for many photonics applications including ultra-high speed optical communication and generation of sub-mm waves. Both active and passive mode locked fiber lasers are the appropriate choice for this purpose because of the availability of erbium doped fiber amplifier. In general, the mode locking occurs with a repetition rate of nf0, where n is an integer and f0 is the longitudinal mode frequency spacing. This is called harmonic mode locking. In the case of rational harmonic mode locking, the repetition rate is (np plus 1) f0 where p is also another integer. For the case of active mode locking, this is obtained when the modulation frequency to the amplitude or phase modulator used for mode locking is given by (n plus 1/p) f0. For the case of passive mode-locking, the rational harmonic mode-locking occurs when the saturable absorber in a ring laser is offset by a fraction p/L: from the center where L is the length of the cavity. We have developed a theory of the rational mode locked fiber laser. The results of the theory are compared with experimental results obtained from a 1.5 (mu) fiber laser actively mode-locked with a LiNbO3 electro-optic phase modulator.
科研通智能强力驱动
Strongly Powered by AbleSci AI