肽
化学
高通量筛选
药物发现
蛋白质聚集
融合蛋白
肽库
荧光
计算生物学
小分子
生物化学
组合化学
细胞生物学
生物
肽序列
基因
重组DNA
物理
量子力学
作者
Woojin Kim,Yun‐Kyoung Kim,Jaeki Min,Dong Jin Kim,Young‐Tae Chang,Michael H. Hecht
摘要
Aggregation of the Alzheimer's peptide Abeta produces toxic multimeric species that play a key role in the development of Alzheimer's disease. Compounds that inhibit this aggregation may prove useful as therapeutic agents for the prevention or treatment of Alzheimer's disease. Although aggregation inhibitors may already exist in combinatorial libraries, finding these compounds in a cost-effective high-throughput manner poses an enormous challenge. To meet this challenge, we have developed a novel high-throughput screen capable of isolating inhibitors of Abeta aggregation from large libraries of inactive candidates. The screen uses a fusion of Abeta42 to GFP. In the absence of inhibition, the rapid misfolding and aggregation of Abeta42 causes the entire fusion protein to misfold, thereby preventing fluorescence. Compounds that inhibit Abeta42 aggregation enable GFP to fold into its native structure and be identified by the resulting fluorescent signal. By implementing the screen on a pilot library of triazine derivatives, we have identified several putative inhibitors. One of the selected compounds was studied in detail by a series of biochemical and biophysical methods. These studies confirmed that the selected compound inhibits aggregation of synthetic Abeta42 peptide. The fluorescence-based method described here is rapid and inexpensive and can be used to screen large libraries for inhibitors of Abeta42 aggregation and/or amyloidogenesis.
科研通智能强力驱动
Strongly Powered by AbleSci AI