The method of minimization for allocation to clinical trials: a review

计算机科学 数学优化
作者
Neil W. Scott,Gladys McPherson,Craig R Ramsay,Marion K Campbell
出处
期刊:Controlled Clinical Trials [Elsevier]
卷期号:23 (6): 662-674 被引量:462
标识
DOI:10.1016/s0197-2456(02)00242-8
摘要

Minimization is a largely nonrandom method of treatment allocation for clinical trials. We conducted a systematic literature search to determine its advantages and disadvantages compared with other allocation methods. Minimization was originally proposed by Taves and by Pocock and Simon. The latter paper introduces a family of allocation methods of which Taves' method is the simplest example. Minimization aims to ensure treatment arms are balanced with respect to predefined patient factors as well as for the number of patients in each group. Further extensions of the method have also been proposed by other authors. Simulation studies show that minimization provides better balanced treatment groups when compared with restricted or unrestricted randomization and that it can incorporate more prognostic factors than stratified randomization methods such as permuted blocks within strata. Some more computationally complex methods may give an even better performance. Concerns over the use of minimization have centered on the fact that treatment assignments may be predicted with certainty in some situations and on the implications for the analysis methods used. It has been suggested that adjustment should always be made for minimization factors when analyzing trials where minimization is the allocation method used. The use of minimization may sometimes result in added organizational complexity compared with other methods. Minimization has been recommended by many commentators for use in clinical trials. Despite this it is still rarely used in practice. From the evidence presented in this review, we believe minimization to be a highly effective allocation method and recommend its wider adoption in the conduct of randomized controlled trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小皮蛋儿完成签到,获得积分10
1秒前
Mz完成签到,获得积分10
2秒前
2秒前
3秒前
彭佳丽发布了新的文献求助30
3秒前
4秒前
小蘑菇应助大侦探皮卡丘采纳,获得10
4秒前
wjm发布了新的文献求助50
5秒前
大模型应助haloucheng采纳,获得10
5秒前
冰魂应助dfhh采纳,获得10
6秒前
gg发布了新的文献求助10
7秒前
7秒前
两棵树完成签到,获得积分10
7秒前
wuzhi发布了新的文献求助10
8秒前
8秒前
8秒前
哈哈哈完成签到,获得积分10
9秒前
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
10秒前
aldehyde应助科研通管家采纳,获得10
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
wanci应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得20
10秒前
10秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
11秒前
凉面发布了新的文献求助30
11秒前
demotlx发布了新的文献求助10
11秒前
清爽胖飞发布了新的文献求助10
12秒前
13秒前
陈昕炜发布了新的文献求助10
13秒前
13秒前
寂漉发布了新的文献求助10
13秒前
dadadsad发布了新的文献求助10
15秒前
小二郎应助彭佳丽采纳,获得30
15秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
A monograph of the genera Conocybe and Pholiotina in Europe 200
Clinical Observation and Analysis of Transient Postoperative CA-125 Elevation in a Patient with Sigmoid Colon Adenocarcinoma 200
The direct observation of dislocations 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836809
求助须知:如何正确求助?哪些是违规求助? 3379059
关于积分的说明 10507387
捐赠科研通 3098970
什么是DOI,文献DOI怎么找? 1706627
邀请新用户注册赠送积分活动 821137
科研通“疑难数据库(出版商)”最低求助积分说明 772445