The method of minimization for allocation to clinical trials: a review

计算机科学 数学优化
作者
Neil W. Scott,Gladys McPherson,Craig R Ramsay,Marion K Campbell
出处
期刊:Controlled Clinical Trials [Elsevier]
卷期号:23 (6): 662-674 被引量:462
标识
DOI:10.1016/s0197-2456(02)00242-8
摘要

Minimization is a largely nonrandom method of treatment allocation for clinical trials. We conducted a systematic literature search to determine its advantages and disadvantages compared with other allocation methods. Minimization was originally proposed by Taves and by Pocock and Simon. The latter paper introduces a family of allocation methods of which Taves' method is the simplest example. Minimization aims to ensure treatment arms are balanced with respect to predefined patient factors as well as for the number of patients in each group. Further extensions of the method have also been proposed by other authors. Simulation studies show that minimization provides better balanced treatment groups when compared with restricted or unrestricted randomization and that it can incorporate more prognostic factors than stratified randomization methods such as permuted blocks within strata. Some more computationally complex methods may give an even better performance. Concerns over the use of minimization have centered on the fact that treatment assignments may be predicted with certainty in some situations and on the implications for the analysis methods used. It has been suggested that adjustment should always be made for minimization factors when analyzing trials where minimization is the allocation method used. The use of minimization may sometimes result in added organizational complexity compared with other methods. Minimization has been recommended by many commentators for use in clinical trials. Despite this it is still rarely used in practice. From the evidence presented in this review, we believe minimization to be a highly effective allocation method and recommend its wider adoption in the conduct of randomized controlled trials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒服的醉卉完成签到 ,获得积分10
刚刚
上官踏发布了新的文献求助10
刚刚
刚刚
Aurora发布了新的文献求助10
刚刚
dmq完成签到 ,获得积分10
1秒前
tzy完成签到,获得积分10
1秒前
田様应助自然的含蕾采纳,获得10
1秒前
李爱国应助苦命吗喽采纳,获得10
2秒前
77发布了新的文献求助10
2秒前
健壮惋清发布了新的文献求助10
2秒前
aiming完成签到,获得积分10
3秒前
蓝天应助上官踏采纳,获得10
7秒前
念y完成签到 ,获得积分10
7秒前
8秒前
yffff完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
优雅砖家完成签到,获得积分10
12秒前
森距离发布了新的文献求助10
13秒前
13秒前
光亮妙之发布了新的文献求助10
13秒前
瑶瑶公主完成签到,获得积分20
14秒前
14秒前
朱成豪发布了新的文献求助10
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
达芬琪完成签到,获得积分20
15秒前
大模型应助科研通管家采纳,获得10
15秒前
大个应助科研通管家采纳,获得10
15秒前
orixero应助科研通管家采纳,获得10
16秒前
深情安青应助科研通管家采纳,获得10
16秒前
16秒前
HOAN应助科研通管家采纳,获得50
16秒前
脑洞疼应助科研通管家采纳,获得10
16秒前
16秒前
LU完成签到,获得积分10
16秒前
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5704029
求助须知:如何正确求助?哪些是违规求助? 5155235
关于积分的说明 15241017
捐赠科研通 4858219
什么是DOI,文献DOI怎么找? 2607009
邀请新用户注册赠送积分活动 1558105
关于科研通互助平台的介绍 1515929