Correlating transcriptional networks to breast cancer survival: a large-scale coexpression analysis

生物 乳腺癌 基因 癌症 微阵列分析技术 生存分析 基础(医学) 基因表达 基因表达谱 癌症研究 计算生物学 遗传学 肿瘤科 内科学 内分泌学 医学 胰岛素
作者
Colin Clarke,Stephen F. Madden,Padraig Doolan,Sinéad Aherne,Helena Joyce,Lorraine O’Driscoll,William M. Gallagher,Bryan T. Hennessy,M. Moriarty,John Crown,Susan Kennedy,Martin Clynes
出处
期刊:Carcinogenesis [Oxford University Press]
卷期号:34 (10): 2300-2308 被引量:798
标识
DOI:10.1093/carcin/bgt208
摘要

Weighted gene coexpression network analysis (WGCNA) is a powerful 'guilt-by-association'-based method to extract coexpressed groups of genes from large heterogeneous messenger RNA expression data sets. We have utilized WGCNA to identify 11 coregulated gene clusters across 2342 breast cancer samples from 13 microarray-based gene expression studies. A number of these transcriptional modules were found to be correlated to clinicopathological variables (e.g. tumor grade), survival endpoints for breast cancer as a whole (disease-free survival, distant disease-free survival and overall survival) and also its molecular subtypes (luminal A, luminal B, HER2+ and basal-like). Examples of findings arising from this work include the identification of a cluster of proliferation-related genes that when upregulated correlated to increased tumor grade and were associated with poor survival in general. The prognostic potential of novel genes, for example, ubiquitin-conjugating enzyme E2S (UBE2S) within this group was confirmed in an independent data set. In addition, gene clusters were also associated with survival for breast cancer molecular subtypes including a cluster of genes that was found to correlate with prognosis exclusively for basal-like breast cancer. The upregulation of several single genes within this coexpression cluster, for example, the potassium channel, subfamily K, member 5 (KCNK5) was associated with poor outcome for the basal-like molecular subtype. We have developed an online database to allow user-friendly access to the coexpression patterns and the survival analysis outputs uncovered in this study (available at http://glados.ucd.ie/Coexpression/ ).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hyh发布了新的文献求助20
1秒前
1秒前
kls发布了新的文献求助10
1秒前
3秒前
Greenbean发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
H·Y完成签到,获得积分10
4秒前
希望天下0贩的0应助kayla采纳,获得10
5秒前
5秒前
unborned完成签到 ,获得积分10
7秒前
Darkangel发布了新的文献求助10
7秒前
7秒前
lll完成签到,获得积分10
7秒前
8秒前
竹前家庆完成签到,获得积分10
9秒前
KK完成签到,获得积分10
10秒前
leonarda1314完成签到,获得积分10
10秒前
情怀应助栎栎栎采纳,获得10
10秒前
hh完成签到,获得积分10
11秒前
joysa发布了新的文献求助10
12秒前
踩点行动发布了新的文献求助10
12秒前
小蘑菇应助逸鑫林采纳,获得10
12秒前
田様应助飘逸忆梅采纳,获得10
13秒前
屋檐伴星泽完成签到,获得积分10
14秒前
leonarda1314发布了新的文献求助10
14秒前
尹汉通完成签到 ,获得积分10
17秒前
19秒前
19秒前
21秒前
小王同学搞学术完成签到,获得积分20
22秒前
丫丫完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
23秒前
24秒前
Hello应助董睿陶采纳,获得30
25秒前
27秒前
27秒前
mmmio应助zshenyingt采纳,获得10
27秒前
27秒前
27秒前
CodeCraft应助追寻地坛采纳,获得20
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
The Great Psychology Delusion 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4651464
求助须知:如何正确求助?哪些是违规求助? 4038600
关于积分的说明 12491989
捐赠科研通 3728788
什么是DOI,文献DOI怎么找? 2058134
邀请新用户注册赠送积分活动 1088914
科研通“疑难数据库(出版商)”最低求助积分说明 969949