Correlating transcriptional networks to breast cancer survival: a large-scale coexpression analysis

生物 乳腺癌 基因 癌症 微阵列分析技术 生存分析 基础(医学) 基因表达 基因表达谱 癌症研究 计算生物学 遗传学 肿瘤科 内科学 内分泌学 医学 胰岛素
作者
Colin Clarke,Stephen F. Madden,Padraig Doolan,Sinéad Aherne,Helena Joyce,Lorraine O’Driscoll,William M. Gallagher,Bryan T. Hennessy,M. Moriarty,John Crown,Susan Kennedy,Martin Clynes
出处
期刊:Carcinogenesis [Oxford University Press]
卷期号:34 (10): 2300-2308 被引量:770
标识
DOI:10.1093/carcin/bgt208
摘要

Weighted gene coexpression network analysis (WGCNA) is a powerful ‘guilt-by-association’-based method to extract coexpressed groups of genes from large heterogeneous messenger RNA expression data sets. We have utilized WGCNA to identify 11 coregulated gene clusters across 2342 breast cancer samples from 13 microarray-based gene expression studies. A number of these transcriptional modules were found to be correlated to clinicopathological variables (e.g. tumor grade), survival endpoints for breast cancer as a whole (disease-free survival, distant disease-free survival and overall survival) and also its molecular subtypes (luminal A, luminal B, HER2+ and basal-like). Examples of findings arising from this work include the identification of a cluster of proliferation-related genes that when upregulated correlated to increased tumor grade and were associated with poor survival in general. The prognostic potential of novel genes, for example, ubiquitin-conjugating enzyme E2S (UBE2S) within this group was confirmed in an independent data set. In addition, gene clusters were also associated with survival for breast cancer molecular subtypes including a cluster of genes that was found to correlate with prognosis exclusively for basal-like breast cancer. The upregulation of several single genes within this coexpression cluster, for example, the potassium channel, subfamily K, member 5 (KCNK5) was associated with poor outcome for the basal-like molecular subtype. We have developed an online database to allow user-friendly access to the coexpression patterns and the survival analysis outputs uncovered in this study (available at http://glados.ucd.ie/Coexpression/ ).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
黄花完成签到 ,获得积分10
4秒前
shaw完成签到,获得积分10
5秒前
小杨完成签到,获得积分10
6秒前
孔刚完成签到 ,获得积分10
9秒前
苗条丹南完成签到 ,获得积分10
10秒前
Luki完成签到,获得积分10
13秒前
Xu关闭了Xu文献求助
14秒前
bkagyin应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
shiqiang mu应助科研通管家采纳,获得20
15秒前
田様应助科研通管家采纳,获得10
15秒前
16秒前
科研通AI2S应助oleskarabach采纳,获得10
17秒前
orixero应助oleskarabach采纳,获得10
17秒前
huzi完成签到,获得积分10
24秒前
Tonald Yang完成签到 ,获得积分20
27秒前
wxyinhefeng完成签到 ,获得积分0
29秒前
30秒前
33秒前
沉默的婴完成签到 ,获得积分10
36秒前
可靠的南霜完成签到 ,获得积分10
37秒前
ccc完成签到 ,获得积分10
37秒前
淡然的糖豆完成签到 ,获得积分10
37秒前
38秒前
45秒前
Ran完成签到 ,获得积分10
46秒前
48秒前
天天快乐完成签到,获得积分10
48秒前
55秒前
兴奋的定帮完成签到 ,获得积分0
58秒前
59秒前
科研通AI5应助大雄采纳,获得10
1分钟前
yyj完成签到,获得积分10
1分钟前
万灵竹完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
334niubi666完成签到 ,获得积分10
1分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4086742
求助须知:如何正确求助?哪些是违规求助? 3625635
关于积分的说明 11497408
捐赠科研通 3339081
什么是DOI,文献DOI怎么找? 1835767
邀请新用户注册赠送积分活动 903914
科研通“疑难数据库(出版商)”最低求助积分说明 822005