维里系数
维里扩张
统计力学
维里定理
径向分布函数
相关函数(量子场论)
Ornstein–Zernike方程
物理
硬球
统计物理学
功能(生物学)
多体问题
经典力学
状态方程
经典流体
积分方程
数学分析
数学
量子力学
分子动力学
电介质
银河系
生物
进化生物学
作者
J. K. Percus,George J. Yevick
出处
期刊:Physical Review
[American Institute of Physics]
日期:1958-04-01
卷期号:110 (1): 1-13
被引量:2737
标识
DOI:10.1103/physrev.110.1
摘要
The three-dimensional classical many-body system is approximated by the use of collective coordinates, through the assumed knowledge of two-body correlation functions. The resulting approximate statistical state is used to obtain the two-body correlation function. Thus, a self-consistent formulation is available for determining the correlation function. Then, the self-consistent integral equation is solved in virial expansion, and the thermodynamic quantities of the system thereby ascertained. The first three virial coefficients are exactly reproduced, while the fourth is nearly correct, as evidenced by numerical results for the case of hard spheres.
科研通智能强力驱动
Strongly Powered by AbleSci AI