Dual-domain accelerated MRI reconstruction using transformers with learning-based undersampling

欠采样 计算机科学 人工智能 生物医学工程 医学
作者
Guan Qiu Hong,Yuan Tao Wei,William A.W. Morley,Matthew Wan,Alexander J. Mertens,Su Yang,Hai‐Ling Margaret Cheng
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier BV]
卷期号:106: 102206-102206 被引量:14
标识
DOI:10.1016/j.compmedimag.2023.102206
摘要

Acceleration in MRI has garnered much attention from the deep-learning community in recent years, particularly for imaging large anatomical volumes such as the abdomen or moving targets such as the heart. A variety of deep learning approaches have been investigated, with most existing works using convolutional neural network (CNN)-based architectures as the reconstruction backbone, paired with fixed, rather than learned, k-space undersampling patterns. In both image domain and k-space, CNN-based architectures may not be optimal for reconstruction due to its limited ability to capture long-range dependencies. Furthermore, fixed undersampling patterns, despite ease of implementation, may not lead to optimal reconstruction. Lastly, few deep learning models to date have leveraged temporal correlation across dynamic MRI data to improve reconstruction. To address these gaps, we present a dual-domain (image and k-space), transformer-based reconstruction network, paired with learning-based undersampling that accepts temporally correlated sequences of MRI images for dynamic reconstruction. We call our model DuDReTLU-net. We train the network end-to-end against fully sampled ground truth dataset. Human cardiac CINE images undersampled at different factors (5−100) were tested. Reconstructed images were assessed both visually and quantitatively via the structural similarity index, mean squared error, and peak signal-to-noise. Experimental results show superior performance of DuDReTLU-net over state-of-the-art methods (LOUPE, k-t SLR, BM3D-MRI) in accelerated MRI reconstruction; ablation studies show that transformer-based reconstruction outperformed CNN-based reconstruction in both image domain and k-space; dual-domain reconstruction architectures outperformed single-domain reconstruction architectures regardless of reconstruction backbone (CNN or transformer); and dynamic sequence input leads to more accurate reconstructions than single frame input. We expect our results to encourage further research in the use of dual-domain architectures, transformer-based architectures, and learning-based undersampling, in the setting of accelerated MRI reconstruction. The code for this project is made freely available at https://github.com/william2343/dual-domain-mri-recon-nets (Hong et al., 2022).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
武雨寒发布了新的文献求助10
2秒前
btcat完成签到,获得积分10
7秒前
8秒前
11秒前
呼啦呼啦完成签到 ,获得积分10
15秒前
科研狗的春天完成签到 ,获得积分10
17秒前
knight7m完成签到 ,获得积分10
18秒前
MRJJJJ完成签到,获得积分10
22秒前
老张完成签到 ,获得积分10
25秒前
29秒前
38秒前
蛋妮完成签到 ,获得积分10
40秒前
吃小孩的妖怪完成签到 ,获得积分10
54秒前
金蛋蛋完成签到 ,获得积分10
54秒前
小石榴的爸爸完成签到 ,获得积分10
57秒前
狼来了aas完成签到,获得积分10
57秒前
几几完成签到,获得积分10
1分钟前
李健应助武雨寒采纳,获得10
1分钟前
小石榴爸爸完成签到 ,获得积分10
1分钟前
1分钟前
居里姐姐完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Ayn完成签到 ,获得积分10
1分钟前
003发布了新的文献求助10
1分钟前
Benhnhk21完成签到,获得积分10
1分钟前
1分钟前
77完成签到 ,获得积分10
1分钟前
武雨寒发布了新的文献求助10
1分钟前
HaoHao04完成签到 ,获得积分10
1分钟前
123完成签到 ,获得积分10
1分钟前
amupf完成签到 ,获得积分10
1分钟前
1分钟前
听闻韬声依旧完成签到 ,获得积分10
1分钟前
刘刘完成签到 ,获得积分10
1分钟前
故酒应助Benhnhk21采纳,获得10
1分钟前
墨墨完成签到 ,获得积分10
1分钟前
临风浩歌完成签到 ,获得积分10
1分钟前
WEN完成签到,获得积分10
1分钟前
eth完成签到 ,获得积分10
1分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808162
求助须知:如何正确求助?哪些是违规求助? 3352794
关于积分的说明 10360398
捐赠科研通 3068774
什么是DOI,文献DOI怎么找? 1685251
邀请新用户注册赠送积分活动 810395
科研通“疑难数据库(出版商)”最低求助积分说明 766095