How Visual Aesthetics and Calorie Density Predict Food Image Popularity on Instagram: A Computer Vision Analysis

人气 心理学 脚本语言 Python(编程语言) 描绘 美学 社会心理学 人工智能 计算机科学 艺术 视觉艺术 操作系统
作者
Muna Sharma,Yilang Peng
出处
期刊:Health Communication [Taylor & Francis]
卷期号:39 (3): 577-591 被引量:5
标识
DOI:10.1080/10410236.2023.2175635
摘要

ABSTRACTSocial media have become an important source where people are exposed to visual representations of foods. This study aims to understand what content factors contribute to the popularity of food images on Instagram. We collected 53,894 images from 90 popular food influencer accounts on Instagram over two years. Applying computer vision methods, we investigated the effects of visual aesthetics and calorie density of foods on audience engagement (i.e. likes, comments) as well as if the effects of visual aesthetics varied by calorie density. Our results showed that both visual aesthetics and calorie density were important predictors of image popularity. The use of arousing, warm colors such as red, orange, and yellow, feature complexity, and repetition predicted higher likes, whereas brightness, colorfulness, and compositional complexity acted reversely. A similar pattern was observed for comments. The calorie density of foods in images positively predicted likes and comments. Also, the effects of visual aesthetics varied by calorie content and were more pronounced for low-calorie images. Health practitioners who plan to harness the power of social media to encourage certain dietary behaviors should take visual aesthetics into account when designing persuasive messages and campaigns. Code availability statementThe Python scripts to conduct computer vision analysis described in this manuscript are available at https://github.com/yilangpeng/food-image-instagram. The Python Package Athec (https://github.com/yilangpeng/Athec) was used to conduct the analysis of aesthetic features (e.g., brightness, color percentages). A detailed description can be found in Peng (Citation2022).Disclosure statementNo potential conflict of interest was reported by the author(s).Supplementary dataSupplemental data for this article can be accessed online at https://doi.org/10.1080/10410236.2023.2175635.Additional informationFundingThe author(s) reported there is no funding associated with the work featured in this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小高同学发布了新的文献求助10
1秒前
orixero应助maclogos采纳,获得10
2秒前
传奇3应助老木虫采纳,获得10
2秒前
科研通AI2S应助Seal采纳,获得10
3秒前
3秒前
4秒前
无花果应助懒羊羊大王采纳,获得10
5秒前
张张发布了新的文献求助10
9秒前
科目三应助兰是一个信仰采纳,获得10
11秒前
12秒前
绿兔子完成签到,获得积分10
13秒前
15秒前
老木虫发布了新的文献求助10
16秒前
17秒前
17秒前
念梦完成签到,获得积分10
19秒前
20秒前
虚幻采枫完成签到,获得积分10
21秒前
霍师傅发布了新的文献求助10
22秒前
22秒前
ZUOSG发布了新的文献求助10
22秒前
Quitter完成签到,获得积分20
23秒前
兰是一个信仰完成签到,获得积分10
24秒前
YGTRECE发布了新的文献求助10
28秒前
乐乐应助Watsun采纳,获得30
30秒前
高挑的寒松完成签到 ,获得积分10
31秒前
大个应助忧郁的太英采纳,获得10
31秒前
张张完成签到,获得积分10
32秒前
大个应助枫叶28采纳,获得10
33秒前
慕青应助潇洒莞采纳,获得10
35秒前
40秒前
Watsun完成签到,获得积分10
41秒前
科研通AI2S应助22myzhang2采纳,获得10
41秒前
Watsun发布了新的文献求助30
43秒前
44秒前
45秒前
乐乐应助璇er采纳,获得10
45秒前
45秒前
嘻嘻完成签到,获得积分10
46秒前
爆米花应助葱葱采纳,获得10
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778047
求助须知:如何正确求助?哪些是违规求助? 3323723
关于积分的说明 10215564
捐赠科研通 3038918
什么是DOI,文献DOI怎么找? 1667711
邀请新用户注册赠送积分活动 798351
科研通“疑难数据库(出版商)”最低求助积分说明 758339