An attention-based deep convolutional neural network for classification and grading of interferents in serum specimens

人工智能 计算机科学 分级(工程) 模式识别(心理学) 卷积神经网络 分割 人工神经网络 深度学习 机器学习 工程类 土木工程
作者
Hairui Wang,Helin Huang,Xiaomei Wu
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier BV]
卷期号:231: 104688-104688
标识
DOI:10.1016/j.chemolab.2022.104688
摘要

Accurate diagnosis depends on the provision of high-quality and efficient laboratory testing in which the serum test is one of the most important tools. However, for various reasons, interferents in serum specimens exist, which affect the accuracy of biochemical tests. Hemolysis, icterus, and lipemia (HIL) are the three most frequent interferents in serum samples. Determining their existence and degree of interference in serum samples before testing is essential to improve test quality. In this study, a deep learning model for classifying and grading HIL interferences is designed under the assumption that the serum color images contain information on the category and degree of interference. Because the major features of the classification and grading should be obtained from the liquid region of the serum, an auxiliary segmentation task was designed to assist the main classification task. The segmentation result provided the position information of the serum region for the main classification task as a spatial attention mechanism, which helped the network to focus on learning the significant features selectively with a channel attention mechanism. The method unified the two-stage task of 3-class classification and 5-degree grading of interferents into one model. The accuracy of the 15-class classification was 98.62%, and the degree grading accuracy of the three serum interferents (HIL) reached 98.74, 98.52, and 98.54%, respectively. This research provides a new approach to realize the automatic classification and grading of HIL interferents in serum specimens.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Su发布了新的文献求助10
1秒前
1秒前
6秒前
Ava应助Su采纳,获得10
6秒前
8秒前
刘延峰发布了新的文献求助10
10秒前
11秒前
Andrew发布了新的文献求助10
13秒前
酷酷海豚完成签到,获得积分10
13秒前
希望天下0贩的0应助高超采纳,获得10
15秒前
BIG川完成签到,获得积分10
15秒前
特牛啊啊应助Severan采纳,获得10
19秒前
zwf完成签到,获得积分20
21秒前
Michael完成签到,获得积分20
22秒前
科研通AI5应助时尚的闭月采纳,获得10
22秒前
23秒前
hanzhipad应助白凌风采纳,获得10
26秒前
26秒前
27秒前
29秒前
30秒前
薄荷花发布了新的文献求助10
30秒前
Annie发布了新的文献求助10
31秒前
啟晨完成签到,获得积分10
31秒前
张太岳发布了新的文献求助30
31秒前
32秒前
orixero应助闪点点采纳,获得30
34秒前
小狮子完成签到,获得积分10
35秒前
36秒前
英姑应助jyzxzr采纳,获得10
36秒前
偤萸发布了新的文献求助10
39秒前
41秒前
45秒前
谜湖发布了新的文献求助10
45秒前
45秒前
小蘑菇应助Annie采纳,获得10
46秒前
科研通AI5应助哈哈采纳,获得10
47秒前
李紫硕发布了新的文献求助10
47秒前
48秒前
白凌风完成签到,获得积分10
48秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Pteromalidae 600
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842830
求助须知:如何正确求助?哪些是违规求助? 3384827
关于积分的说明 10537714
捐赠科研通 3105396
什么是DOI,文献DOI怎么找? 1710290
邀请新用户注册赠送积分活动 823577
科研通“疑难数据库(出版商)”最低求助积分说明 774149