Stabilizing and Accelerating Federated Learning on Heterogeneous Data With Partial Client Participation

计算机科学 人工智能 机器学习
作者
Hao Zhang,Chenglin Li,Wenrui Dai,Ziyang Zheng,Junni Zou,Hongkai Xiong
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-18
标识
DOI:10.1109/tpami.2024.3469188
摘要

Federated learning (FL) commonly encourages the clients to perform multiple local updates before the global aggregation, thus avoiding frequent model exchanges and relieving the communication bottleneck between the server and clients. Though empirically effective, the negative impact of multiple local updates on the stability of FL is not thoroughly studied, which may result in a globally unstable and slow convergence. Based on sensitivity analysis, we define in this paper a local-update stability index for the general FL, as measured by the maximum inter-client model discrepancy after the multiple local updates that mainly stems from the data heterogeneity. It enables to determine how much the variation of client's models with multiple local updates may influence the global model, and can also be linked with the convergence and generalization. We theoretically derive the proposed local-update stability for current state-of-the-art FL methods, providing possible insight to understanding their motivation and limitation from a new perspective of stability. For example, naively executing the parallel acceleration locally at clients would harm the local-update stability. Motivated by this, we then propose a novel accelerated yet stabilized FL algorithm (named FedANAG) based on the server- and client-level Nesterov accelerated gradient (NAG). In FedANAG, the global and local momenta are elaborately designed and alternatively updated, while the stability of local update is enhanced with help of the global momentum. We prove the convergence of FedANAG for strongly convex, general convex and non-convex settings. We then conduct evaluations on both the synthetic and real-world datasets to first validate our proposed local-update stability. The results further show that across various data heterogeneity and client participation ratios, FedANAG not only accelerates the global convergence by reducing the required number of communication rounds to a target accuracy, but converges to an eventually higher accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助苗条丹南采纳,获得10
2秒前
515完成签到,获得积分10
4秒前
希望天下0贩的0应助b_wasky采纳,获得10
5秒前
茹果发布了新的文献求助10
5秒前
5秒前
自信的泥猴桃关注了科研通微信公众号
7秒前
9秒前
12秒前
12秒前
羊咩咩哒完成签到,获得积分10
12秒前
12秒前
科研通AI5应助辣辣采纳,获得10
13秒前
Apple发布了新的文献求助10
15秒前
慕青应助自觉寄文采纳,获得10
15秒前
单薄灵松完成签到,获得积分10
15秒前
Jamie关注了科研通微信公众号
15秒前
15秒前
寻北意发布了新的文献求助20
17秒前
17秒前
Bao发布了新的文献求助30
17秒前
陈chq发布了新的文献求助10
18秒前
影像大侠完成签到,获得积分10
19秒前
20秒前
20秒前
20秒前
文艺裘发布了新的文献求助10
21秒前
515发布了新的文献求助10
22秒前
23秒前
24秒前
cherish发布了新的文献求助10
24秒前
26秒前
27秒前
28秒前
SciGPT应助AteeqBaloch采纳,获得10
28秒前
二枫忆桑发布了新的文献求助10
29秒前
30秒前
Lxjie发布了新的文献求助10
31秒前
文艺裘完成签到,获得积分10
31秒前
默默地读文献应助515采纳,获得20
31秒前
辣辣发布了新的文献求助10
32秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806853
求助须知:如何正确求助?哪些是违规求助? 3351618
关于积分的说明 10354910
捐赠科研通 3067447
什么是DOI,文献DOI怎么找? 1684519
邀请新用户注册赠送积分活动 809788
科研通“疑难数据库(出版商)”最低求助积分说明 765635