亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep contrastive learning enables genome-wide virtual screening

计算机科学 深度学习 人工智能 基因组 计算生物学 自然语言处理 生物 遗传学 基因
作者
Yinjun Jia,Bowen Gao,Jiaxin Tan,Hong Xin,Wenyu Zhu,Haichuan Tan,Yuan Xiao,Yanwen Huang,Yue Jin,Yafei Yuan,Jiekang Tian,Wei‐Ying Ma,Ya-Qin Zhang,Chuangye Yan,Wei Zhang,Yanyan Lan
标识
DOI:10.1101/2024.09.02.610777
摘要

Abstract Numerous protein-coding genes are associated with human diseases, yet approximately 90% of them lack targeted therapeutic intervention. While conventional computational methods, such as molecular docking, have facilitated the discovery of potential hit compounds, the development of genome-wide virtual screening against the expansive chemical space remains a formidable challenge. Here we introduce DrugCLIP, a novel framework that combines contrastive learning and dense retrieval to achieve rapid and accurate virtual screening. Compared to traditional docking methods, DrugCLIP improves the speed of virtual screening by up to seven orders of magnitude. In terms of performance, DrugCLIP not only surpasses docking and other deep learning-based methods across two standard benchmark datasets, but also demonstrates high efficacy in wet-lab experiments. Specifically, DrugCLIP successfully identified agonists with < 100 nM affinities for 5HT 2A R, a key target in psychiatric diseases. For another target NET, whose structure is newly solved and not included in the training set, our method achieved a hit rate of 15%, with 12 diverse molecules exhibiting affinities better than bupropion. Additionally, two chemically novel inhibitors were validated by structure determination with Cryo-EM. Finally, a novel potential drug target TRIP12, with no experimental structures and inhibitors for reference, was used to challenge DrugCLIP. DrugCLIP achieved a hit rate of 17.5% by screening a pocket identified on an AlphaFold2-predicted structure, verified with multi-cycle SPR assays. Molecules with the highest affinities also showed a dose-dependent inhibition to the enzymatic function of TRIP12. Building on this foundation, we present the results of a pioneering trillion-scale genome-wide virtual screening, encompassing approximately 10,000 AlphaFold2 predicted proteins within the human genome and 500 million molecules from the ZINC and Enamine REAL database. This work provides an innovative perspective on drug discovery in the post-AlphaFold era, where comprehensive targeting of all disease-related proteins is within reach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yukirin发布了新的文献求助50
3秒前
4秒前
小蘑菇应助detective采纳,获得10
5秒前
千千完成签到,获得积分10
5秒前
8秒前
JD完成签到 ,获得积分10
9秒前
Ava应助辛勤的映波采纳,获得10
15秒前
17秒前
NexusExplorer应助务实的访卉采纳,获得10
20秒前
李爱国应助科研通管家采纳,获得10
22秒前
22秒前
量子星尘发布了新的文献求助10
24秒前
24秒前
max发布了新的文献求助10
29秒前
粗心的沉鱼完成签到,获得积分10
30秒前
35秒前
呜呼完成签到,获得积分10
37秒前
不能随便完成签到,获得积分10
41秒前
44秒前
48秒前
49秒前
Yukirin完成签到,获得积分10
52秒前
Orange应助唔西迪西采纳,获得10
55秒前
max完成签到,获得积分10
55秒前
PDE完成签到,获得积分10
1分钟前
呦呦切克闹完成签到,获得积分10
1分钟前
1分钟前
嘿吗湾子完成签到,获得积分20
1分钟前
嘿吗湾子发布了新的文献求助30
1分钟前
1分钟前
wk123发布了新的文献求助10
1分钟前
唔西迪西完成签到,获得积分10
1分钟前
1分钟前
唔西迪西发布了新的文献求助10
1分钟前
1分钟前
1分钟前
dingbeicn完成签到,获得积分10
1分钟前
2分钟前
meteor发布了新的文献求助10
2分钟前
wk123完成签到,获得积分20
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606552
求助须知:如何正确求助?哪些是违规求助? 4690993
关于积分的说明 14866654
捐赠科研通 4706922
什么是DOI,文献DOI怎么找? 2542831
邀请新用户注册赠送积分活动 1508189
关于科研通互助平台的介绍 1472276