亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep contrastive learning enables genome-wide virtual screening

计算机科学 深度学习 人工智能 基因组 计算生物学 自然语言处理 生物 遗传学 基因
作者
Yinjun Jia,Bowen Gao,Jiaxin Tan,Hong Xin,Wenyu Zhu,Haichuan Tan,Yuan Xiao,Yanwen Huang,Yue Jin,Yafei Yuan,Jiekang Tian,Wei‐Ying Ma,Ya-Qin Zhang,Chuangye Yan,Wei Zhang,Yanyan Lan
标识
DOI:10.1101/2024.09.02.610777
摘要

Abstract Numerous protein-coding genes are associated with human diseases, yet approximately 90% of them lack targeted therapeutic intervention. While conventional computational methods such as molecular docking have facilitated the discovery of potential hit compounds, the development of genome-wide virtual screening against the expansive chemical space remains a formidable challenge. Here we introduce DrugCLIP, a novel framework that combines contrastive learning and dense retrieval to achieve rapid and accurate virtual screening. Compared to traditional docking methods, DrugCLIP improves the speed of virtual screening by several orders of magnitude. In terms of performance, DrugCLIP not only surpasses docking and other deep learning-based methods across two standard benchmark datasets but also demonstrates high efficacy in wet-lab experiments. Specifically, DrugCLIP successfully identified agonists with < 100 nM affinities for 5HT 2A R, a key target in psychiatric diseases. For another target NET, whose structure is newly solved and not included in the training set, our method achieved a hit rate of 15%, with 12 diverse molecules exhibiting affinities better than Bupropion. Additionally, two chemically novel inhibitors were validated by structure determination with Cryo-EM. Building on this foundation, we present the results of a pioneering trillion-scale genome-wide virtual screening, encompassing approximately 10,000 AlphaFold2 predicted proteins within the human genome and 500 million molecules from the ZINC and Enamine REAL database. This work provides an innovative perspective on drug discovery in the post-AlphaFold era, where comprehensive targeting of all disease-related proteins is within reach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
26秒前
40秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
mama完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助30
3分钟前
ljy2015完成签到 ,获得积分10
3分钟前
CodeCraft应助Q123ba叭采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
Owen应助科研通管家采纳,获得10
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
HanFeiZi完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
5分钟前
典雅的纸飞机完成签到 ,获得积分10
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
6分钟前
研究员2发布了新的文献求助50
6分钟前
5433完成签到 ,获得积分10
6分钟前
6分钟前
三杠完成签到 ,获得积分10
6分钟前
7分钟前
岁岁完成签到 ,获得积分10
7分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4037602
求助须知:如何正确求助?哪些是违规求助? 3575449
关于积分的说明 11373635
捐赠科研通 3305375
什么是DOI,文献DOI怎么找? 1819173
邀请新用户注册赠送积分活动 892620
科研通“疑难数据库(出版商)”最低求助积分说明 815022