活动站点
水解酶
分子动力学
热稳定性
热稳定性
化学
蛋白质工程
生物信息学
分子力学
材料科学
计算生物学
纳米技术
生物化学
计算化学
酶
生物
有机化学
基因
作者
Yingnan Li,Yuzhuang Fu,Xiling Chen,Shilong Fan,Zexing Cao,Fei Xu
标识
DOI:10.1002/anie.202410881
摘要
Industrial fermentation applications typically require enzymes that exhibit high stability and activity at high temperatures. However, efforts to simultaneously improve these properties are usually limited by a trade-off between stability and activity. This report describes a computational strategy to enhance both activity and thermal stability of the mesophilic organophosphate-degrading enzyme, methyl parathion hydrolase (MPH). To predict hotspot mutation sites, we assembled a library of features associated with the target properties for each residue and then prioritized candidate sites by hierarchical clustering. Subsequent in silico screening with multiple algorithms to simulate selective pressures yielded a subset of 23 candidate mutations. Iterative parallel screening of mutations that improved thermal stability and activity yielded, MPHase-m5b, which exhibited 13.3 °C higher T
科研通智能强力驱动
Strongly Powered by AbleSci AI